EVENT BUILDER & LEVEL 3

MANUAL

Ezxpert’s Guide

Nuno Leonardo

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

for the EVB+LEVEL3+ONLINE teams

October 2003

EERRRRRENRATIRAR,

CDF/DOC/ONLINE/PUBLIC/6138
Original version: August 1, 2002
Update version: November 2, 2003

Event Builder and Level 3 Manual

K. Anikeev, G. Bauer, A. Belloni, A. Bolshov, I. Furi¢,
G. Gémez-Ceballos B. Iyutin, T.H. Kim, B. Knuteson, A. Korn,
I. Kravchenko, N. Leonardo, J. Miles, M. Mulhearn, M. Neubauer,
Ch. Paus, A. Rakitin, S. Tether, J. Tseng, F. Wiirthwein

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Abstract
The set of topics presented roughly defines the scope of knowledge that is nec-
essary for EVB/L3 pager duties. The items listed under “advanced” category can
be skipped on the first stages of getting familiar with the system but will likely be
needed if a serious problem occurs.

Foreword

The Event Builder (EVB) and Level3 (L3) systems constitute a crucial
component of the data acquisition structure of CDF. They are responsible for
collecting and assembling together the event fragments from the various Front
End crates, organizing the disordered event data pieces fully reconstructing
the event, making a final trigger decision, and transferring the accepted events
to CSL towards offline storage.

The purpose of this document is to provide a working knowledge of the EVB
and L3 systems of CDF at Run II. It constitutes a functional, in addition to
operational, description of the two systems, and of how they are integrated
together and in the full DAQ system of the experiment.

It should give a detailed enough overview of the systems so as to provide
in general a comprehensive source of information for EVB and L3 training —
namely, for experts on call. It is also structured in a convenient way — each
main topic is presented as a set of various sub-topics, which themselves are
decomposed into several paragraphs. This way it should as well constitute a
easy-to-look reference.

Nuno! and the EVB/L3 Team

'mailto: leonardo@fnal.gov

Contents

Foreword i
1 Hardware and Operating System 10
1.1 Necessary Linux knowledge 10
1.2 VME standard 19
1.3 VxWorks 21
1.4 VRB . . . 26
1.5 Scanner CPU and Scanner Manager hardware 28
1.6 EVB-L3 Ethernet Network 30
1.7 ATM switch e 34
2 Event Builder 40
2.1 EVB dataflow mechanics L 40
2.2 SCRAMNet e 43
2.3 Hardware database for EVB 48
2.4 EVB proxy account 50
2.5 EVB proxy process 52
3 Level 3 54
3.1 Level3 dataflow mechanics 54
3.2 Reformatter 59
3.3 L3filter e 61
3.4 Relay oo 64
3.5 Level3 proxy 68
3.6 L3 monitoring 73
3.7 L3 proxy account 7
4 A few topics common to both EVB/L3 81
4.1 Raw data format 81
4.2 EVB/L3 Ace control panel o 83
4.3 Monitoring GUIs 86
5 General DAQ topics 89
5.1 RC State Machine and Run Control 89
5.2 CDF trigger system 91
5.3 Websupport 93
5.4 Trigger Manager 95
5.5 DAQMON o 97
5.6 CSL . . . o 98
5.7 L3 Manager 100
5.8 SmartSockets 101
5.9 Oracle database 102

i

A APPENDIX 105

A.1 Help information on VxWorks commands 105
A.2 Minicom keys 106
A.3 DAQ VRB output data format, 106

List of Figures

O~ O Ot i W N =

DO RN DD N = = = = = e = e = O
W N O OO0 Ui WwWwNn— O

24
25
26
27

VRB board. 27
Internal EVB/L3 Ethernet network. 30
EVB/L3 Ethernet switches and physical connections. 31
VPLand VCI 35
Messaging of single event. Lo 40
Communications of EVB processes. 41
SCRAMNet cards: (i) VME6U module and (ii) PCIcard. 44
SCRAMNet bypass switch (i) assures serial ring (ii) continuation. 44
EVB monitoring processes. Lo 52
Structure of 13 node.o 54
Input modules used in normal data taking. 5%)
Output modules used in normal data taking. 56
13_node — filter communications. L. 62
CORBA communication: client sends request to server through ORB. 64
L3 Relay system. 66
Leveld proxy structure. L 68
Level3 farm Monitoring. Lo 73
L3 Monitoring processes on an internal node. 74
L3 Monitoring processes on a subfarm. 0oL L. 74
L3 Monitoring processes on Gateway2. L. 75
The EVB/L3 Ace Control Panel. 84
Expert’s tool for testing ATM connections. 85
Expert’s tool for checking and modifying the online status of nodes in the Level3

farm. . ..o 86
The Level3 Display. e 87
The EVB monitor. e 87
The EVB/L3 help pages for aces and pagers. 93
The DAQMON gui. o o e 97

il

Thematic Index

Hardware and Operating System

Necessary Linux knowledge
How to check Linux flavors on L3 farm and

why they are not uniform 10
How to use man 10
How to check for running processes 10
How to check memory and CPU usage 10
How to grep through log files 11
Useful commands 11

What is nfs-mounted disk, how to check

which disks are seen on a node 12
How to check available disk space, used disk
12

What is CVS, how to checkout, commit,
find diff, update or check the status of a package 12
What is ups and what is setup command
13

What are semaphores, message queues and
shared memory (on conceptual level) 15
tcsh and csh scripts, how to write a simple

script, where is documentation on scripting 15
How to check system resources with ipcs

and to clear them with ipcrm 16
How to check connections between programs

and computers with netstat 16
Expect 16

Root password, how to shut down and re-

boot Linux node properly 17
What can be found from: /proc, /etc/hosts,

and /var/log/messages 17
Cron scripts that keep disk space usage low

space

for

(Gateways, Converters, other nodes) 18
VME standard

What is VME 19

How does VME crate looks like 19

What is backplane, what is it for 19

Power supplies, what voltages are needed
19
What is 6U or 9U, what is an adapter, where
are the fuses on adapters
and how to check and replace them 19
What is a bus master, how to make a CPU

to be one 20
VxWorks

What is VxWorks 21

How to log in to VxWorks 21

How to reboot vxworks, when does inter-
rupted boot prompt appears 22
How to check and change vxworks boot pa-

iv

rameters, what are boot/startup scripts and where
they are found 22
What are most useful commands on Vx-
Works 23
Tasks in VxWorks, how to check if a task is
running or if it crashed, how to get stack trace 24
Is there a VxWorks manual and how to find
it 24
Global variable and accessibility of mem-
ory, how to dump and change a region of memory
24
How to build and run little C programs un-
der VxWorks 24

VRB
What are VRBs for, where can VRB man-
ual be found 26
What is the difference between the SVX
and DAQ VRBs 26
What are enabled and emulated channels,
who sets them 26
What is resetting VRBs, how and by whom

it is done 26
Who are the contact people if we have VRB
problems 26

What is the structure of raw data coming
from VRB, what is VRB header 27
Direct VRB access 27

Scanner CPU and Scanner Man-
ager hardware
What is on-board computer 28
Where is PCI interface and ATM card 28
Rules to insert CPU into adapter and adapter
into crate 28
How CPU connects to network 28
The transition module 712, how to connect
it and check if it is functioning properly 28
What is serial port, how to connect to se-
rial port for SCPU and SM;
how to use minicom, what are the keys;
is it any different from Ethernet connection 29

EVB-L3 Ethernet Network
What is approximate diagram of intercon-
nections of L3 internal network 30
How are we connected with online cluster
and CSL computers 32
What is the Ethernet connection between
SCPUs and the 37¢ floor 32
How to see if a switch is okay and how to
reboot it (lights, etc) 32
How to test Ethernet connection 32

ATM switch

What is ATM 34
What hardware components it has 34
What are VPI and VCI 34
How to test ATM connection between SC-
PUs and Converters 34
How to check hardware on SCPU, ATM
and Converters looking at LEDs 36
How to understand problems by logging in
to ATM CPU 36

Event Builder

EVB dataflow mechanics 40
SCRAMNet

What is SCRAMNet for 43

SCRAMNet card for VxWorks, for PC 43

Bypass switch 44

Which LED indicators must/must not be

lit in normal mode 44

How EVB uses SCRAMNet, SCRAMNet
memory, areas reserved for computer-
computer communications, how to run

and understand output of dumpEvb tool 45
How to explicitly test SCRAMNet commu-
nications from Linux and VxWorks 46

Full understanding of the EVB messages 46

Hardware database for EVB
What is hardware database, how to connect
to it using cardEditor 48
What are all the tables: crates, tracers,
racks, etc. 48
What is online flag for a component, what
does it matter if it is on or off, by whom it is used
48
Where to find entries for SCPUs 48
How to find out which VRB is located in
which EVB crate
and what FE crates are connected to
that VRB 48
How to change database entry 49

EVB proxy account

How to log in for yourself and for the Aces

50

.cshrc file, what environment has to be set
50

How to run ace control panel 50

What is zephyr, how to run zephyr window,
what it’s used for 50

EVB proxy process

Where it is run 92

What are necessary supporting processes 52

How to check if it is alive 52

Where are the log files 52
Level 3

Level3 dataflow mechanics

Converters, Processors and Outputs 54

13_node: input, analysis chains and output
54

How all Level3 nodes connect to each other
56

13_.node command line options 56

How to run a simple 13_node test on a single
node (random data—trash) 57

What are circular buffers, how to print them
with 13_debug_dump command o8

Reformatter

What it is for 59

Where reformatter errors appear (13 logs,
error logger) 59

How to decode reformatter errors 60

How to understand reformatter errors 60

What to do about reformatter errors once
they start to happen 60

L3 filter

Who is the group of people responsible for
it 61

How it comes into L3 farm 61

The different packages: filter, calib, tcl 61

What are trigger tables 61

Where are filters found on 13 nodes 61
How 13_node starts filter and how it com-
municates with it 61
Where to find info if filters fail to start 62
Where are filter log files, how to tell if a

filter has crashed or not 62
What happens if filter crashes, what about
core files 62
Relay
What is relay 64
What is orbacus/CORBA 64
What is relay map 65
Which processes have to be found on which
nodes 65

How long it takes to run a command on the

entire farm 65
Where relay is used 65
How to restart relay from clean state and
when it is needed to be done 66
If relay does not start, how to find out why;
trace the problem going along the relay
tree, finding failed mode, how to restore
it 66
Level3 proxy
What it is for 68
How to check if it is alive, where are the log
files, understand the log files 68
What is the conceptual structure of the pro-
68
How 13proxy is related to ROOT 68
Communication between Run Control and
13proxy (transition and configuration messages) 68
Heartbeat and ping error messages 69
What is done by 13proxy during the state
transitions 68
What is End Of Run summary 69
How to trace a problem along the chain
Transition Failure, 13proxy log file,
Relay log files, local CV/PR/OUT log

gram

files and process status 70
L3 monitoring

The general scheme 73

What programs run where 73

What is the starting order, how connections
74

Where are the log files, what can be learned
from them 75
How to check if monitoring for a given node

occur

is working properly 76
L3 proxy account
Log in 7

What environment has to be set, .env file,
dependence of environment on hostname 77
Where is level3, reformatter and relay code

7
What is local distribution of the code and
how to do it 7
What can be found in /cdf directory on all
78
What is base key, what kinds are defined 79

nodes

A few topics common to both EVB/L3

Raw data format

Where data is seen in raw format 81

vi

How it is different from offline (roughly) 81
The exact details of VRB fragment struc-
ture for SVX and non-SVX VRB crates 81
Event Builder checks of VRB structure and
most common errors 81
Where errors are reported, effect on data
taking and what can be done about them 82
How to do octal dumps of raw data files 82
The format of the full raw data file 82
Be able to find errors in full files with cor-

rupted data saved by reformatter 82
EVB/L3 Ace control panel

How to start 83

Safe and unsafe operations 83

Possible failures and how to understand them
(ace control panel does not start,
buttons do not have any effect, etc) 83

How to check the response to stop/start/cleanup

L3 command with log files 84
Where to find ”reasons to clean up evb” in
84

The check for suspended processes and where
the results are saved 84
Expert tools (e.g. Configuration, Statis-

log files

tics) 85
Monitoring GUIs

L3 display 86

EvbDagmonEvbDagmon 86

General DAQ topics

RC State Machine and Run Con-

trol

What is state machine 89

What happens with the detector/DAQ dur-
ing transitions and in states of DAQ state machine
89

What is a partition 89

What is resource manager, booking resources

89
How to configure a simple run 89
What is Error Handler 90
The use of ”Reply and Acknowledgements”
window 90
CDF trigger system
How it works in general 91
Done dead time, done timeout 91
Busy dead time, busy timeout 91
TSI dead time 91

Web support

Electronic log books 93
Help pages 93
CDF online home page 94
Linux documentation 94

Trigger Manager

What it does, where it is running 95
TM tasks, scanFIFO 95
How to check communications between TM
and SM (dumpEvb) 95
DAQMON
How to start 97
Know what all tools are for 97
CSL
What is CSL, where it is physically 98
How it is connected to L3 98

What are the main components of CSL, ex-
plain message queues,
receiver, logger, disk management, etc

on a vague general level 98
How to check CSL state using monitoring
tools 98
When to request restart of CSL 98
L3 Manager
What does it do, where is it running 100
SmartSockets
What is SmartSockets, DaqMsg, Merlin 101
What is RTServer 101
Where SmartSockets are used on Level3 farm
101
What happens if RTServer dies, if it is restarted
101

Oracle database

Where is it 102
How do we use it 102
Is it okay if it is shut down, the effect on
EVB/L3 operations 102
Connecting to database and applying SQL
102
APPENDIX
Help information on VxWorks commands
105
Minicom keys 106
DAQ VRB output data format 106

vii

HARDWARE
&
OPERATING SYSTEM

1 Hardware and Operating System

1.1 Necessary Linux knowledge

Linux-i How to check Linux flavors on L3 farm and why they are not uniform

Currently we are using two versions of Linux kernel (flavors) ? on the farm. This
can be checked using the Linux command uname for printing system information.
For example, as of the writing, the following is displayed for the two Gateways:

b0l3gatel> uname -rs
b0l3gatel> Linux 2.0.38

b0l3gate2> uname -rs
b0l3gate2> Linux 2.2.14-1.3.0f2smp

The reason for this non uniformity is that the driver for the ATM switch was written
for an original flavor and has not been updated. For this reason, the Converters are
using this older flavor, while the Processor and Output nodes use an updated one.
Note that this requires that code compilation be performed in both Gateways.

Linux-ii How to use man

The Linux manual pages for a command are displayed using man name-of-
command.

The flag k e.g. prints one line descriptions for all man pages related to a specified
keyword (same as apropos)

Linux-iii How to check for running processes

Process status is reported using the ps command. By default the ps program only
shows processes that maintain a connection with a terminal; processes that run
without communicating with a user on a terminal can be see with the x flag.

In particular
PS ~aAUXWWW

shows processes of all users (a) identifying them (u) without controlling terminal
(x), and each flag w specified will add another possible line to the output.

ps -1 displays also a NI (nice) column with the priority values of the active processes.
3

2In general, flavors are used to indicate the operating system, or OS version, dependency of a product.
3The priority of a process can be set with nice command and adjusted with renice.

10

Linux-iv How to check memory and CPU usage

Top CPU processes are displayed with top command.

Linux-v How to grep through log files

grep (general regular expression program) is a very powerful search tool. It prints
lines matching a specified pattern; for example

grep string file

returns all the lines that contain a string matching the expression string in log file
file. The flag i ignores capitalization; v prints all lines not matching string.

Additionally, instead of having it searching directly a file, grep can accept data
through STDIN, by redirecting the output of another command using the pipe * (|)
operator, as in

cat file | grep string

Linux-vi Useful commands
Some few commands may reveal particularly useful.

In order to search for a file it can be used commands like

e whereis locate the binary, source, and manual page files for a command.
e locate list files in databases that match pattern.

e find search for files in a directory hierarchy.

There are however differences. whereis will search only particular paths to find
binaries and or manpages (manpages tell where it looks). locate uses a database
created by an updatedb to efficiently locate files. It works great, assuming database
is updated often enough, but need to be careful otherwise. One other possibility is
to use find , which will search each and every path recursively from it’s start point.
It will in principle be slower than the previous two, but is most powerful. E.g., the
following

find /home -name core -exec rm{} \;

would find all core files in home directories and remove them.

e top give continual reports about the state of the system, including a list of
the top CPU using processes

The following are file pagers, programs that display text files.

4 Pipes connect processes together, allowing the output of a program be used as the input of another
one.

11

e tail delivers the last part of the file; the flag -f follow, attempts to read and
copy further records from the input-file

e less displays the contents of files
The most frequently used less commands are Space, Return,b, /, 7, and g, for
scrolling and searching, forwards and backwards.

Both tail -f and less +F may be used to monitor the growth of a file that is
being written by some other process.

Linux-vii What is nfs-mounted disk, how to check which disks are seen on a
node

The Network File System (NFS) was developed to allow machines to mount a disk
partition on a remote machine as if it were on a local hard drive. This allows for
fast, seamless sharing of files across a network.

The file /etc/fstab contains static information about the filesystems. Type man
fstab for information on each field in the file.

In particular it describes what devices are usually mounted (type man mount
to see how), including during booting.

Linux-viii How to check available disk space, used disk space

df displays the number of total bytes on a partition, the number used, and the
percentage of space used. The flag h displays output is a more human friendly
form (appends M~ Meg, G~Gig).

du displays the space used by each directory in the given path. Flag a summarize
disk usage of each file, recursively for directories, and s provides a grand total for
the directory.

mount displays all mounted devices, their mount-point, filesystem, and access
(with command line arguments is used to mount file system)

Linux-ix What is CVS, how to checkout, commit, find diff, update or check the
status of a package

CVS (Concurrent Versions System) is a version control system.

It stores all the versions of a file in a single file in a clever way that only stores the
differences between versions. All files are stored in a centralized repository, which —
in the case of the cdf online code — is located in b0dau30

b013gatel> echo $CVSROOT
b013gatel> cvs@b0dau30.fnal.gov:/cdf/code/cvs

A typical work-session includes the following steps:

12

Get source
cvs checkout module

This creates a private copy of the source for module in a directory with that
name. The files in the directory ./module/CVS/ are used internally by
CVS and should not in principle be modified.

Commit changes
cvs commit file

This will store the modified file in the repository.

Clean up

In the end, the working copy can be erased simply by removing the directory
created originally by cvs checkout. More convenient however, is to use the
cvs release command, that checks that no uncommitted changes are present,
and in that case the d flag removes the working copies.

View differences
cvs diff [-r revi] [-r rev2] file

cvs diff shows differences between files in working directory and source repos-
itory, or between two revisions in source repository.

If a particular revision is not specified, the files are compared with the revision
they were based on.

If no files are specified, it will display differences for all those files recursively
in the current directory that differ from the specified or corresponding revision
in the source repository.

cvs update updates copies of source files from changes that other developers have
made to the source in the repository.

cvs status shows current status of files — latest version, version in working directory,

whether working version has been edited.

Linux

-x What is ups and what is setup command for

UPS (Uniz Product Support) ® is a toolkit developed at Fermilab designed for the
management of software products on local systems, and to facilitate the product
distribution and configuration management tasks of the product providers.

Once one has an UPS product, all the settings necessary for it to work properly are
done automatically via the command

setup [product-name]

®Detailed information at http://www.fnal.gov/docs/products/ups/.

13

What this does is to execute the script setups.csh, which in particular sets/modifies
environment variables: PRODUCTS (points to database), UPS_DIR (points to
product root directory), PATH (modified to include $UPS_DIR/bin), SETUP_UPS

(contains information for unsetup command).

All the other ups commands (other than unsetup) have the standard syntax
ups command [options] product-name [version]

and include the following.
ups flavor returns flavor information.

ups list returns information about the declared product instances in a UPS database.
It displays what products are in the database, what the current version of a product
is for the machine’s flavor and what other versions might be available.

ups modify allows you to manually edit any of the database product files. It
performs syntax and content validation before and after the editing session. ups
verify checks the integrity of the database files for the specified product(s), and
lists any errors and inconsistencies that it finds.

A list of all the UPS commands with brief definitions is displayed with the ups
help command.

In the Gateways, the location of a given ups product has the form
/usr/products/product-name / flavor [product-version /

The ups table for each product, used e.g. by the setup command, is located at

/usr/products/product-name / flavor / product-version /ups / product-name. table

How to transform a product into an ups product?
Product declaration is done with the ups declare command.

If the product was installed with upd install ¢ | this automatically makes the initial
declaration of the product to the local UPS database. Otherwise the product need
to declare it manually, which is done with the ups declare command. The following
is a common syntax

ups declare product-name version -r /path/to/prod/root/dir/
-f flavor [-z /path/to/database] [-U /path/to/ups/dir]
[-m table_name.table] [-M /path/to/table/file/dir] [chainFlag]

The steps in producing an ups product could involve:

6See indicated ups reference above.

14

get and compile the source - upd install; cvs checkout, make
move to proper place in /usr/products/... directory

create/edit ups table

Ll

declare product as ups as in the example that follows

setenv ace /usr/products/cdfevb/ace/v2_14/

ups declare -z /usr/products/upsdb -r $ace -m cdfevb_ace.table
-s NULL -U $UPS_DIR -M $ace/ups cdfevb_ace v2_14

setup cdfevb_ace [v2_14]

In order to declare a specific version of a product current, still taking the previous
example, type

ups declare -g current cdfevb_ace v2_14 -z /usr/products/upsdb

Linux-xi What are semaphores, message queues and shared memory (on con-
ceptual level) ’

These are three interprocess communication (IPC) facilities.

Semaphores are data structures that are used for synchronization between two or
more processes. Basically they can be viewed as a single integer that represents the
amount of resources available. When a process wants a resource, it checks the value
of the semaphore, and if it is nonzero, it decrements the appropriate number from
the semaphore in accordance to the amount of resources it wishes to use. The kernel
will block the process if the semaphore is zero or doesn’t have a value high enough
for the decrement.

Message queues provide a memory based FIFO between two processes. The
primary difference between a message queue and a socket or named pipe is that
message queues may have multiple processes reading and writing from and to them,
or no readers at all.

Shared memory (SHM) is a method of IPC whereby two or more unrelated pro-
cesses can access the same logical memory. It provides a very efficient way of sharing
and passing data between multiple processes.

Linux-xii tcsh and csh scripts, how to write a simple script, where is documen-
tation on scripting

Shell scripting is central in Linux, and essential for simple system administration
tasks. It is very well documented on the web. 8

The simplest possible script is

"See e.g. the book [[5]] Beginning Linux programming, chapter 12, on the trailers.
8See e.g. http://www.linuxdoc.org/LDP /abs/ for bash scripting.

15

A

#!/bin/bash
echo "hello world\n"
exit O

Basic knowledge of other scripting languages (e.g., sed, awk, perl, ...) may also
reveal extremely useful for specific tasks.

dvanced ... but not too much

Linux-xiii How to check system resources with ipcs and to clear them with

Linux

Linux

ipcrm

ipcs Report interprocess communication facility status for queues, shared memory,
semaphores:

ipcs -s list Semaphores
ipcs -q list share queues
ipcs -m shared memory
ipcrm Remove queues, shared memory, or semaphores:
ipcrm -sem semid list Semaphores
ipcrm -msg msqid list share queues

ipcrm -shm shmid shared memory

-xiv How to check connections between programs and computers with
netstat

netstat displays information of the Linux networking subsystem — network connec-
tions, routing tables, interface statistics, masquerade connections, netlink messages,
and multi- cast memberships.

-xv Expect
Expect is a Unix tool for automating interactive applications.

In a way, Expect automates a software dialogue — it reads a script that resembles
the dialog itself, and by following the script it knows what can be expected from a
program and what the correct responses should be. The script can specify responses
by patterns, and can take different actions on different patterns.

The three basic commands are send (sends strings to a process), expect (waits for
strings from a process), and spawn (starts a process).

The simplest Expect script is

16

#!/usr/bin/expect -f
send "hello world\n"
exit

Expect is a tool also employed on Level3, e.g. allowing to execute commands over
specified sets of nodes. ? Tutorials are also available on the web. '°

Linux-xvi Root password, how to shut down and reboot Linux node properly
/sbin/shutdown -h Halt after shutdown
/sbin/shutdown -r Reboot after shutdown (or reboot)

Linux-xvii What can be found from: /proc, /etc/hosts, and /var/log/messages

/proc is a pseudo-filesystem which is used as an interface to kernel data structures.
It shows the running processes. Commands like e.g. ps and top use information
stored in these files. Follow examples of files in /proc.

/proc/stat contains status information about the process;
/proc/cmdline holds the complete command line for the process;
/proc/meminfo reports the amount of free and used memory;
/proc/cpuinfo contains information of (each) CPU;

/proc/modules lists of the modules that have been loaded by the system, e.g. in a
Converter

b013c02> more /proc/modules

scramnet 1 3
nicstarl_b 4 0
tulip 7 2

where scramnet, nicstar, tulip are the modules correspondent to SCRAMNet,
ATM, Ethernet networks, resp.;

/proc/atm/devices is another relevant file for detecting problems related to ATM
connections. !

/etc directory contains critical startup and configuration files. The /etc/hosts file
(locally) maps names to IP addresses. Each line starts with an IP address and
continues with the various symbolic names by which that address is known. The
first line in particular should be

127.0.0.1 localhost localhost.localdomain

9As a single example, the Expect script $L3cSH DIR/13_all nodes_exe can be used (from Gateway?2
as user 13proxy) to execute a specified shell command on all nodes of the farm.

0F.g. http://www.csc.calpoly.edu/~dbutler /tutorials/winter96 /expect/.

HGee later section.

17

/var/log directory contains various system log files. /var/log/messages holds
messages printed to console ... (e.g., last time of reboot, ...)

Linux-xviii Cron scripts that keep disk space usage low (Gateways, Converters,
other nodes)

Periodic execution under Linux is handled by the cron deamon. cron starts when
the system boots and remains running as long as the system is up.

Scripts located in directories /etc/cron.daily, cron.hourly/, cron.monthly/,
cron.weekly/ are executed at correspondent times.

In particular, maintenance of log files (and eventually executable versions) are au-
tomated with cron.

As an example, /etc/cron.daily/tmpwatch removes files which haven’t been accessed
for a period of time.

18

1.2 VME standard

VME-i What is VME

VME, which stands for Versa Module Eurocard, is a bus system. In general a bus is
a common channel between multiple devices, that allows different pieces of hardware
to communicate with each other.

VME uses a master-slave architecture — functional modules called masters transfer data
to and from functional modules called slaves. In general, a master is able to initiate data
transfer cycles, whereas a slave detects bus cycles generated by masters, and participates
in the cycles if they are selected. VMEbus allows in general multiple masters to share the
data transfer bus, thereby creating a multiprocessor system.

Data transfer is asynchronous.™
VME-ii How does VME crate looks like

VME crates are located on the first floor of B0 building (and another in the 3rd).
There one finds non-silicon (CPUs denoted b0Oeb11 to b0eb16) and silicon (CPUs
denoted b0eb17 to b0eb25; b0ebl9 being the SRC board, responsible for silicon
trigger) and, on the third floor, the Scanner Manager (CPU denoted b0eb10) crates.

VME card cages contain 21 slots. They contain several boards — the bus master,
SCRAMNet adapter, and various VME Readout Boards (VRBSs).

VME-iii What is backplane, what is it for

VME backplane is an interior part of the VME crate where the various bus cards
are connected to. It is really the implementation of the bus itself.

Mildly advanced

VME-iv Power supplies, what voltages are needed

The power suppliers are located on the bottom of the rack, below the VRB crates.
The lower(top) one feeds the lower(top) crate.

Non-silicon and silicon crates use different voltages on the suppliers — indicated by
the supplier green led; needed voltages are —5.2V, 12V, 5V and £12V, 5V, 3.3V,
resp.

The SCPU boards for non-silicon crates have a transformer incorporated. '3

12PCI on the other hand is an example of a synchronous bus, as data transfer is coordinated by a clock.
Blocated on the SCPU adapter, is used for supplying transition module 712 with —12V.

19

VME-v What is 6U or 9U, what is an adapter, where are the fuses on adapters
and how to check and replace them

There are different size VME crates: 6U (smaller) and 9U (bigger) (6 and 9 stan-
dard units, resp.). E.g. the Scanner Manager (b0eb10, in 3rd floor) connects directly
to a 6U crate, but the SCPUs belong to 9U crates, and so actually they are con-
nected to an adapter, which itself connects to the cage. L.e., an adapter allows for
incorporating smaller 6U type boards into bigger 9U type crates.

The fuses are located on the adapters. There are four of them (can be recognized
as resistor-size components, of green color).

There are three red leds associated with the fuses, which one can try to confirm are
on even with the adapter inserted in the cage (provided the slot on its rhs is empty).

The way to check them involves '* turning off the correspondent power supply,
removing the adapter from the cage, localizing the components themselves and
check them individually with an amperimeter.

In case they are burnt, it’s necessary to remove (pull out) and replace them.

VME-vi What is a bus master, how to make a CPU to be one
Bus master is the crate manager, a local VME-based processor.

Each SCPU crate possesses two CPU units, the bus master and an SCPU. (Addi-
tionally, each VRB board possesses a lower level processing unit.)

If needed, an SCPU can be made the master. That involves changing the position
of a jumper (red color). Jumper sites are located near the edge of the SCPU board
(not adapter), and are labeled as J#. For the present purpose the relevant one is
J22.

There are three possible positions: no jumper (default; board is not master) and
with jumper positioned in each of the two end pairs (out of the three) of pins (board
is bus master, permanently or automatically'®).

1 After notifying the Control Room.
15L.e., when it detects it is necessary.

20

1.3 VxWorks

VxWorks-i What is VxWorks

VxWorks is a Unix-like operating system for embedded real-time applications. It is
"Unix-friendly’ — it inter-operates nicely with the Unix environment and provides
for many of the Unix C-library routines, like file I/O, sockets, RCP, etc.

It is the standard real-time operating system in the embedded VME processors at
CDF (7). Of particular interest is that the SCPUs, and the Scanner Manager, run
under VxWorks.

VxWorks is a real-time OS — the programmer can have control on the way the tasks are
executed (scheduling). It is a 'preemptive’ multi-task OS. Each task has a priority level.
Supposing that the CPU is running a task t1 of priority p1, and a task t2 of priority p2>pl
is called, then t1 is suspended right away and t2 is executed. When a resource needed for
t2 is missing, t2 is turned in "pending” state. If the execution of t2 has been completed,
t2 is discarded from the schedule. In either case the CPU will resume the execution of t1,
unless a task t3 of priority p3 such that p3<p2 and p3>pl has been spawned by p2.

When two tasks with the same priority level must be managed, the CPU will spend
alternatively a certain amount of time (”time slice”) on each task until they are completed.
The time slice length can be defined by the programmer.

VxWorks supports concurrent tasking—workstations communicating with each other by
exchanging messages. VxWorks is multi-threaded and supplies all intertask messaging
functions, including semaphores, pipes, sockets, and TCP /IP interprocessor communica-
tions.

VxWorks supports disk- and network-based filesystems.

VxWorks supports remote debugging from workstations.

VxWorks-ii How to log in to VxWorks !¢

To log in a VxWorks board, one can use one of the commands vxlogin, rlogin,
telnet. Exiting is with logout command.

E.g., logging from Gatewayl into one of the SCPUs

b013gatel> rlogin bOebll
-->

-—> logout

b01l3gatel>

If it is not possible to rlogin, one should try to connect via minicom. 7

16See http://www-b0.fnal.gov:8000/vxworks/vxworks.html
I7If that still doesn’t work it may be necessary to check the crate, and eventually reboot it.

21

b0dau30~ > ssh b0dapl0
<b0dap10.fnal.gov> minicom bOebll

ctrl-A @) Enter

VxWorks-iii How to reboot vxworks, when does interrupted boot prompt ap-
pears

Rebooting is performed with the reboot command.

There should be no SUSPENDed tasks. If that is however the case, reboot may be
necessary.

It may happen that the usual (— >) VxWorks prompt does not show up after trying
to log in, and instead appears an interrupted prompt like

[VxWorks]:

In this case, the command for rebooting is still ctrl-X and may be particularly
useful. It is also still possible to change configuration variables on this prompt.

VxWorks-iv How to check and change vxworks boot parameters, what are
boot /startup scripts and where they are found

VxWorks uses some variables for boot configuration from vxboot '* node. Those
variables can be viewed and modified with the command bootChange. For ex-
ample,

-> bootChange

>.? = clear field; ’-’ = go to previous field; D = quit
boot device : dc

processor number : 2

host name : b013boot-vx

file name : $VXWORKS_MV2604

inet on ethernet (e) : 192.168.20.11:ffffff00
inet on backplane (b):

host inet (h) : 192.168.20.130
gateway inet (g) : 192.168.20.11
user (u) : vxboot

ftp password (pw) (blank = use rsh):
flags (f) : 0x0

18This is a Linux machine, used by SCPUs and SM to boot from.

22

target name (tn) : bOebl1l
startup script (s) : $SCPU_ALL_SCRIPT
other (o) : mv2604

value = 0 = 0x0
->

The are startup scripts that are executed on booting, and that are defined by
$SCPU_ALL_SCRIPT. They are located on vxboot node; see its .chsre file.

VxWorks-v What are most useful commands on VxWorks

To learn about the different commands, type help on VxWorks prompt.

--> help

help Print this list

netHelp Print network help info

h [nl] Print (or set) shell history
i [task] Summary of tasks’ TCBs

ti task Complete info on TCB for task
td task Delete a task

ts task Suspend a task

tr task Resume a task

Important commands include the following.

e i [task] displays tasks currently managed by the VxWorks system; among the
displayed parameters are the name, the priority level (0 for the highest priority,
255 for the lowest), the task ID (in hexadecimal), and the status of the task
(pending, ready (=running), suspended).

e memShow

e ti task complete info for task

e tt task prints the stack trace of a task.
e moduleShow

e hostShow

e taskDelay task

e td task aborts a task

e ts task suspends a task; unlike td, the task will still be displayed in the list
by i

e tr tfask resumes a suspended task; the system will resume the execution of
the task at the point it was suspended

23

e reboot

e logout

the same as ctr-X

task is either the name or the task ID (with the Ox prefix).

VxWorks-vi Tasks in VxWorks, how to check if a task is running or if it crashed,

how to get stack trace

One can check the status of a task (i.e., whether it is running) with the command i
task, as in the following example.

-—>1i

PRI STATUS

tExcTask
tLogTask
tShell

tRlogind
tTelnetd

excTask
logTask
shell

rlogind
telnetd

lefeb30
lefc1b8
lecfc00
1edb8d8
1ed99b0

17ea08
17ea08
163390
15f9cc
15f9cc

SP ERRNO DELAY
lefeab8 0 0
lefc0f0 0 0
lecf880 3d0001 0
ledb518 0 0
1ed9850 0 0

READY or PEND are okay. SUSPEND is not, but if it nevertheless happens to be

so, ti can be used to see where the task crached.

ti gives the stack trace.

VxWorks-vii Is there a VxWorks manual and how to find it

There is a printed version of the VxWorks manual in the trailers.

19

The manual ?° as well as other documentation %' can also be found online (download,

pdf format).

Advanced

VxWorks-viii Global variable and accessibility of memory, how to dump and
change a region of memory

Under VxWorks system, all variables are global, and all memory can be accessed
and changed by the user (it is not protected).

Pieces of memory can be displayed or modified by specifying the VxWorks commands

d and m together with respective pointer variable to that memory region.

19 Ask Ilya, ikrav@fnal.gov
20http:/ /www.windriver.com /pdf/ref.pdf
2http://dOserverl.fnal.gov/www/online_computing/projects/controls/vxworks.html

22Check help on VxWorks prompt.

24

22

VxWorks-ix How to build and run little C programs under VxWorks

For creating an object file, one uses the crosscompiler for VxWorks in Linux (one
of the Gateways).

As an example, the list of commands needed to compile atmtest, a module which is
meant to be used to test ATM connections, as later described, is as follows

evbproxy@b0l3gate2> setup -q mv2603 vxworks v5_3e
evbproxy@b0l3gate2> setup cdfevb_seqio
evbproxy@b01l3gate2> ccppc $VX_MV2603_0PTS -I$CDFEVB_SEQIO_DIR/inc atm_rw.c

This will produce the file atm_rw.o, which has been renamed atmtest.

After compiling, move the .o file to the vxboot node. 2

In order to load it, in vxworks prompt use
-> 1d < file.o

Only then can it be executed,
-> < program

After loading the module, the moduleShow command should list it, among other
modules. To unload the module, when no longer needed, use

-> unld "file.o"

23E.g, to one’s home directory on that node.
24Do not forget the double quotes.

25

1.4 VRB

VRB-i What are VRBs for, where can VRB manual be found

VRB (VME Readout Board) boards are multi-port memories used to buffer and
filter data (pending a Level 2 trigger decision) prior to be transferred to SCPUs.

Each of the 15 VME (a.k.a. VRB or SCPU) crates * possesses one SCPU that
controls the various VRBs in the same crate. Each VRB itself receives event data
from front-end (FE) crates. A VRB contains a 10 (numerated 0 to 9) independent
input ports (data channels from FE system) and a common VME output port.

A manual is available online 26 which specifies VRB details.

VRB-ii What is the difference between the SVX and DAQ VRBs
Buffer management for DAQ VRBs is provided by the VRB internal logic.

In the case of SVX VRBs, it is a single controller board (the Silicon Readout Con-
troller or SRC, located in one of the Silicon crates) communicating with all SVX
VRB modules that is is responsible for buffer management.

Focus on DAQ VRB. It works as a Level 3 input buffer (no data discarded, no
external control necessary) operating in FIFO (first-in-first-out) mode. Each of the
10 channels has a buffer capacity of 64 Kbyte. Event data is organized by 4 byte
-long words. %7

VRB-iii What are enabled and emulated channels, who sets them

Each of the 10 channels per VRB module can be either enabled or disabled. This
is done changing the database 2® accordingly.

It is also possible to emulate a particular channel (it generates itself 'data’) for
testing purposes.

VRB-iv What is resetting VRBs, how and by whom it is done
The operation of VRB resetting involves clearing all data buffers.

Preparing for the START state implies that everything is initialized properly, in
a given sequence. Thus, when instructions from RC arrive — after passing through
EVB Proxy, Scanner Manager — SCPU instructs VRBs to reset (through appropriate
control registers in VRB).

The board itself can also be reset manually.

25These are the VME crates located on the first floor of BO.
26http:/ /www-ese.fnal.gov/eseproj/svx/vrb/vrb.pdf

2"The upper limit for resident events on memory is actually 64.
28cardEditor in online machines.

26

VRB-v Who are the contact people if we have VRB problems

If problems arise related to SVX VRBs one should contact the silicon pager. 2 If
they related to DAQ VRBs there are also contact people. 3°

VRB-vi What is the structure of raw data coming from VRB, what is VRB
header

Output data from a VRB has a specific format. Each VRB segment has some header
information added, together with the link fragments.

Advanced

VRB-vii Direct VRB access

One can read VRB data directly, check VRB registers and test FE-to-VRB connec-
tion without using the Event Builder. There is a number of tools in CDF online
software developed for that purpose. The tools evolve continuously and are mainly
used by the people responsible for VRB problems. 3! These tools are sometimes
useful for EVB experts as well, in which case help from DAQ VRB experts should
be sought.

Figure 1: VRB board.

29GVX: for deeper problems the contact person is Steve Nahn.
30DAQ: Jim Patrick or (if hardware need to be replaced) Fred Lewis.
31 At the moment, these people include Jim Patrick and Frank Chlebana.

27

1.5 Scanner CPU and Scanner Manager hardware

SCPU/SM-i What is on-board computer
CPU embedded on a board.
It is the case of SCPU in VRB crates (a.k.a. SCPU crates).

SCPU/SM-ii Where is PCI interface and ATM card
PCM ATM card directly connected to SCPU board.
ATM network connection to Converter nodes is via PCI ATM.

SCPU/SM-iii Rules to insert CPU into adapter and adapter into crate
Make sure power is turned off during procedure.

First insert CPU board into adapter. Then pull adapter into crate and adjust
handlers.

As a general rule, before using the crate after power cycling must clean EVB.

SCPU/SM-iv How CPU connects to network

Data received by SCPU from VRBs is directed to a Converter via ATM network.
The connections from SCPU to ATM switch (and from this to Converters) are ATM
(optical) fibers. ATM is a data network.

SCPU communicates to SCRAMINet network, using SCRAMNet card (slot 2)
through backplane, and the card connects to ring 32 through SCRAMNet bypass.
SCRAMNet is a control network, managed by Scanner Manager.

SCPU connects to Ethernet network.

SCPU connects to minicom network via serial ports.

SCPU/SM-v The transition module 712, how to connect it and check if it is
functioning properly

This module is located in the VRB crate on the side opposite to SCPU relative to
backplane.

It possesses an Ethernet and several serial ports.

A serial port is used by minicom network. The minicom network cables originating
from the 712 transition module are directed to one of the minicom switches (located
on the 1st floor, in the rack next to the crate’s - IRR15D)

The Ethernet cable provides the connection of the SCPUs to the internal L3 Eth-
ernet farm. Ethernet cables from the various VRB crates go to a patch panel (on

32GCRAMNet network has a ring topology.

28

the front side, bottom part of the rack) before they are directed to the SCPU hub
% on the 3rd floor (lhs after entering L3 farm room).

Proper functioning is indicated by orange and green leds turned on.

SCPU/SM-vi What is serial port, how to connect to serial port for SCPU and
SM; how to use minicom, what are the keys; is it any different from
Ethernet connection

Serial ports in the case of Linux boxes are located on its back side. 34

In the case of SCPUs, the minicom connection is done through serial port on the
transition module, on the opposite side of the backplane with respect to the SCPU.

The case of Scanner Manager is different, and the connection to minicom must be
done by connecting the serial port of the SM crate to that of bOpcom2.

Minicom is a simple network that allows to execute a few simple commands. In
order to use it it is necessary to first log in to the minicom server, bOdap10.

b0dau30~ > ssh b0dap10
<b0dap10.fnal.gov> minicom bOebll
ctrl-A Z

Minicom commands are introduced as ctrl-A key . The command ctrl-A Z displays
the minicom keys meaning, as follows.

Main Functions Other Functions

Dialing directory..D run script (Go)....G | Clear Screen....... C
Send files......... S Receive files...... R | cOnfigure Minicom..0
comm Parameters....P Add linefeed....... A | Suspend minicom....J
Capture on/off..... L Hangup............. H | Exit and reset..... X
send break......... F initialize Modem...M | Quit with no reset.Q
Terminal settings..T run Kermit......... K | Cursor key mode....I
lineWrap on/off....W local Echo on/off..E | Help screen........ Z

| scroll Back........ B

Ethernet connections use a different port (Ethernet port).

33in general, a hub is a common connection point for devices in a network; a switching hub on the other

hand actually reads the destination address of each packet and then forwards the packet to the correct
port.
34Where one would connect e.g. the keyboard.

29

1.6 EVB-L3 Ethernet Network

Ethernet-i What is approximate diagram of interconnections of L3 internal net-
work %

b013pcom1 b013pcom2
Gatewayl Gateway2
h0l3gatel
hl]l3gate1—vx bl]ngateZ

[V

\

SCPUs SM vxboot Qutputs Converters Processors
DAQ: hUebl1-16 bleb10 bi13boot—vx b03ul1-08 b013c01-16 b013001-...
SVX: blebl17-25

Figure 2: Internal EVB/L3 Ethernet network.

Gatewayl and Gateway2 contain the EVB and L3 proxies resp., and serve has doors
connecting the internal Ethernet network to the outside world. They have both ex-
ternal and internal IP addresses assigned. External are 131.225.236.188 (b013pcom1)
and 131.225.236.189 (b0l3pcom?2). Internal are 192.168.24.11 (b0l3gatel, seen from
13 farm sub-net), 192.168.20.128 (b0l3gatel-vx, seen from SCPUs sub-net), and
192.168.24.12 (b013gate2, seen from L3 farm only).

All the other machines in the internal network (L3 farm and EVB) have internal
(but not external) IP addresses (of the standard form 192.168.x.x). 3°

The L3 farm (including Converters, Processor and Output nodes) communicate to
each other forming one sub-net, which also includes both Gateways and Ethernet
connection to the ATM switches.

A separate sub-net incorporates the SCPUs, Scanner Manager and vxboot machine
(both SCPUs and SM boot from this machine, b0l3boot-vx, located on the third
floor) and only one of the Gateways, Gatewayl (see 2).

35Sometime in November 2001 this was slightly modified, as problems occurred after increasing the size
of the network; basically it was split into two (almost independent) sub-nets, communicating through
Gatewayl.

36To be sure, one can only connect to any of these internal machines after log into the Gateways.

30

Both sub-nets are almost separate, Gatewayl providing the link between both. 37

Eth#l sub-network

| 1
| 1
: Eth#1 switch : Gatewayl
|
: |
Lo e e |
SCPUs 5M vxhoot
—
, Converter
subfarm switch « «
-
~ 16 Processors
Output
ab
)
—
subfarm switch » Converter
b
-
~ 16 Processors . 1 switch per
L]
subfarm
. 0 Gatewayl
main switch
Gateway2

output switch

CSL

Figure 3: EVB/L3 Ethernet switches and physical connections.

Ethernet switches are located on the third floor.

The topmost one is responsible for one of the sub-nets, namely the one involving
the SCPUs, SM and vxboot.

The other switches are responsible for the other sub-net, namely the one including
the L3 farm. 16 of these are associated with the sub-farms, and get connected

3TE.g. the Converter nodes need to communicate to Scanner Manager, and these are not in the same
sub-net.

31

together by cross over cables going from each one to the main switch. An additional
switch is associated with the Output nodes, and provides connection to CSL (see
3).

The topmost switch has 4 cable connections respectively to Gatewayl, SM, SCPUs
(which cables are bundled together by an extra hub also in the third floor) and
vxboot.

Each of the switches of the L3 farm subnet are assigned to each one of the 16 sub-
farms. In particular each has 2 connections (read cables) to the sub-farm Converter,
3 16 to the 16 3° Processor nodes in the sub-farm, 1 to the Output node, and 1
cross over cable to the main switch).

The main switch receives 16 crossover cables, and one cable from each Gateway; it
also receives an additional cable providing Ethernet connection to the ATM switches
(bOatm1, bOatm2).

The output switch receives 2x8 cable connections from the 8 Output nodes, *° and
8 connections to CSL (Consumer Server Logger). *!

Ethernet-ii How are we connected with online cluster and CSL computers

Connection of the internal network to the online cluster is done via the two Gate-
ways.

The output Ethernet switch connects directly to CSL.

Ethernet-iii What is the Ethernet connection between SCPUs and the 3" floor

The SCPUs connect to one of the internal sub-nets (see above), namely through an
extra hub (also located on the third floor) that is connected to the ’topmost’ switch
in the rack.

Ethernet-iv How to see if a switch is okay and how to reboot it (lights, etc)

Can check leds — to each connection there corresponds a pair of lights; normally
they should be one steady green (OK) and one flashing orange (data).

Rebooting is done by power cycling the switch. *2

Advanced

38The reason there are two instead of a single cable, is that due to bandwidth reasons each is assigned
half of the sub-farm.

39 Actually currently the number of Processor nodes per sub-farm is not uniform, it can be 18, 16 or
14.

40Each Output node has 4 cable cable connections — it receives data from 2 sub-farms, and 2 cables
connect to the output switch.

41CSL is b0dau32; and CSL backup is bOdau31.

42No need to put nodes offline.

32

Ethernet-v How to test Ethernet connection
Can try to ping and ssh to a particular node.

The entire farm can also be ping-ed by executing the script $L3_CSHDIR /13_ping_farm,
or by conveniently making use of $L3_CSHDIR/13_all_nodes_exe. *3

43Executed from b0l3pcom2 (as user 13proxy).

33

1.7 ATM switch

ATM-i What is ATM
ATM (Asynchronous Transfer Mode **) is a (widely employed in telecommunication
systems) mode for transferring data over networks.
Some general facts about ATM:

It uses short, fixed-length packets called cells for transport; information is divided among these
cells, transmitted and then re-assembled at their final destination.

It provides a single network for all traffic types-voice, data, video. Allows for the integration of
networks improving efficiency and manageability.

It is not based on a specific type of physical transport, it is compatible with currently deployed
physical networks. ATM can be transported over twisted pair, coax and fiber optics.

In the Event Builder System at CDF, an ATM network is used to transfer data from
SCPUs to the L3 farm.

ATM-ii What hardware components it has

The network uses the AAL5 protocol, that allows for proper "hand-shaking’ of
involved hardware components. These include the ATM switch, the PMC ATM
card on the SCPUs (and SM), and the PCI ATM module on the Converter nodes.

All these are connected together through (pairs of) optical connections. %°

The ATM switch itself is formed by an input part, a switching fabric, and an output
part. Both input and output parts contain 1 CPU, b0atm1 and bOatm2, resp., and 4
network modules. Each of these modules has 4 connections, each formed by receiver
and transmitter plugs.

ATM-iii What are VPI and VCI

The complete address (VPI,VCI) specifying the transport of ATM cells is done using
VPI (Virtual Path Identifiers) and VCI (Virtual Channel Identifiers).

While a VCI describes a unidirectional transport of ATM cells, the VPI identifies a
unidirectional transport of ATM cells belonging to a bundle of virtual channels.

ATM-iv How to test ATM connection between SCPUs and Converters

One can log into both ATM CPU and SCPU and execute existing programs created
for the purpose. Consider the following (’synchronized’) sequence of instructions on
both a given SCPU and a Converter node.

44Not Automated Teller Machine ...
45 An optical connection maximum data transfer rate is ~ 16.2 Mbps.

34

Figure 4: VPI and VCI

root@013c02> /root/atm/br 1.1

evbproxy@b0l3gatel> ssh blebll

-> 1d < “vxboot/ikrav/atmtest

value = 21434672 = 0x1471130

-> atm_write(2,1)

nwrite = 13

value = 0 = 0x0
Hello, world

-> logout

evbproxy@b0l3gatel>
Ctrl-C
root@b013c02> exit
b013c02> exit

Log in as evbprozxy on the SCPU and as root on the Converter.

On the Linux machine (Converter node) run /root/atm/br with argument list
VPI.VCI, where VPI denotes the number (see bellow) of the SCPU one is using for
the test (and just log in) and VCI is a number (0,1,2).

On the VxWorks machine (SCPU), after loading (1d) the atm module into memory,
one runs atm_write(VPI’,VCI), where VPI’ is the number (see below) of the
Converter one is using and VCI is the same number used above. One would then
expect to see the string ” Hello, World ” printed on the Converter’s console.

The check of the connection between SCPUs and converters can be performed au-
tomatically using the Expert’s control in the Ace Control Panel (from version 2.20).
The procedure described before is implemented in an expect script, which takes care
of loading/unloading the atm module in the selected SCPU, starting/killing br on
the converter and sending 1000 4-characters words, checking that all of them are
received by the converter. The script exits printing a summary withthe number
of words that have been received. The GUI allows the user to specify the SCPU,
converter and port number.

Note: The number said above to be associated with the nodes is determined as follows:
in the case of the Converters, this number coincides with its CPU name termination (i.e.,

46 A certain set of VCI numbers are reserved for system use.

35

b013c#), so number=+; in the case of SCPUs it corresponds to its CPU name termination
(i.e., b0eb#) after subtracting 10, so number=-10. This correspondence can be checked
explicitly at the bottom of the /etc/hosts file on the Converters, where the ATM addresses
are such that VPI is in the address’ last position.

ATM-v How to check hardware on SCPU, ATM and Converters looking at
LEDs

On Converters one can look at file /cron/atm/devices.

b013c01> more /cron/atm/devices
Itf Type ESI/"MAC"addr AAL(TX,err,RX,err,drop)
0 nicstar 001c40000f48 0 (0 0000) 5 (00 29263817 0 1)

One can recognize the protocol designation AAL5. Looking at the last brackets, one
identifies the correspondence between the number of transmitted (Tx) and received
(Rx) 'messages’, and respective errors (err), and number of dropped messages. One
sees as expected zero on the column for transmitted, and a great number for received,
as it should be for a Converter node (relatively to the ATM network).

Advanced

ATM-vi How to understand problems by logging in to ATM CPU

One can log in directly to the ATM CPUs (bOatml, bOatm2) and perform a num-
ber of informative commands, hoping that will give hints towards understanding a
problem.

b01l3gatel> telnet bOatml
login:
bOatml::> help

General commands:

’?? to get list of commands at the current level
’up’ to go up one menu level

’top’ to go to the root menu

’exit’ to leave AMI

about - Display program information
close - Close this connection
configuration> - System configuration submenu
debug> - Switch debug submenu

display> - Switch display submenu

exit - Exit AMI

help - Display help for each command

36

history -
open -
operation> -
ping -
redo -
Tows -
startup -
statistics> -
top -
up -

bOatml: :> statistics
bOatml::statistics> help

General commands:

Display command history
Open a connection

Switch operation submenu
Ping a host or switch
Repeat a history command
Get/set number of rows
Switch configuration wizard
Switch statistics submenu
Go to the root menu

Go up 1 menu level

’?? to get list of commands at the current level
’up’ to go up one menu level
’top’ to go to the root menu

’exit’ to leave AMI

atm> -
atmroute> -
cec> -
cesel -
cesdsl -
ces -
cr -
board> -
fratm> -
funi> -
ipaccess -
iwf> -
module> -
nsapfilter> -
oam> -
port -
reset -
portcard -
scp> -
spans -
signalling -
vce -
vpc -
vpt -

bOatml::statistics> port

ATM layer statistics submenu

Atm route statistics submenu
Common Equipment Card submenu
Display CES port statistics
Display CES port statistics
Display CES connection statistics
Display callrecord statistics
Board statistics submenu

FR/ATM statistics submenu

FUNI statistics submenu

Display IP filtering statistics
Interworking Submenu

Display Netmod statistics submenu

Address Filtering Statistics submenu

0AM statistics submenu
Display general port counters
Reset counter statistics
Display portcard statistics

Switch Control Processor statistics submenu

Display SPANS signalling statistics
Display signalling statistics
Display virtual channel statistics
Display virtual path statistics

Display virtual path terminator statistics

Input Output Cells Cells

37

Port VPs VCs BW VPs
1A1 16 0 0.0K 0
1A2 16 0 0.0K 0

bOatml::statistics> exit
b0l3gatel>

VCs
0
0

38

BW
0.0K
0.0K

Received Transmitted ErrSecs Ovrflws

776512820
1280241857

0
0

0
0

0
0

EVENT BUILDER

2 Event Builder

2.1 EVB dataflow mechanics

The 'mechanics’ of EVB data flow is described with detail in a separate document.*” The
diagram below contains the actions involved in starting a run, loading and sending an
event. *8

™ RC sm SCPU(P1) SCPU(P2) L3 (P1)
L: Begin run
C: Define part.

Y

C: Define part.

C: Def. 1. ack
e part. ac

-
R

C: Def. part. ack

C: Builder part.
map

Y

L: Begin run ack
L: Activate

-
-}

C: Eventready

-

C: Load event -
L -
C: Load eventack | No load

Load

[}

0

: Load event ack

b

C: Event baded

C: Send event -

C: Send event ack

Bk

C: Send event ack

C: Event complete
-

Reformat
C: Builder ready event

Figure 5: Messaging of single event.

PROCESSING 1 EVENT
The following sequence of messages are involved in the processing of a single event.

1. TM — SM new event (whenever L2 accept)

2. SM — SCPUs load event

3. SCPUs — SM acknowledge: load event

4. SM — SCPUs send event (to available builders)

5. SCPUs — SM acknowledge: sent event

6. SM — Boss x (of a unique Converter) event complete

7. Boss x = SM acknowledge: received event

47S.Tether, Event builder messages, ~leonardo/Public/13evb/docs/EVBmessages.ps

48The participants — Trigger Manager, Run Control, Scanner Manager, SCPUs and Converter node —
are represented as vertical lines; time evolves from top to bottom; C: denotes control network messages
and L: refers to Ethernet (local area network) communications.

40

8 SM — TM done

There is a limit of 7 simultaneous events in the EVB; the done messages are necessary
for the TM to keep track of the number of events currently being processed.

[

VRB : ' SCRAMNet SM

' Glohal data '

' Control task 0 (] .

‘ Ehactes ' registry
i 20 event]
ATM : 1 : hotline
i <— cormmond i
1 sending task 0] dispatch

T retu, Status —= \ P

Feenal! A

r N SO E

1 sending task 1] m

retu, Status —= %

r2endl E

i

f = pomRd :

i sending task 2] =

reti st —= E

rends =

__ :

Converter i

i

| buider | i

.

B

—#|||-|||-|||-III-III-III-III-III-III-III-III-III-III-III-III-III'

Figure 6: Communications of EVB processes.

PROCESS COMMUNICATION

Various processes on the SCPUs, Converter nodes and Scanner Manager are respon-
sible for assuring the proper sequence of actions leading to the processing of events by
EVB.

On the SCPUs there are receiving, sending and control tasks. Receiving obtains data
from VRBs, and transfers it when appropriate to sending through a global data struc-
ture, that works additionally as a 20 event buffer. Control communicates with SM using
SCRAMNet memory, and communicates SM control commands to receiving and sending
using message queues. While there is a single receiving (tRec_0) and a single control (tC-
trl-0) processes running on each SCPU, there are various sending (tSend-0 up to tSend_47)

41

tasks, three per Converter to which it communicates. *°

On the Converter nodes, [3_node contains builders and a builder boss threads. Each
builder receives data from the corresponding sending tasks (one from each SCPU) through
the ATM network. The builders do not communicate with the SM directly; instead,
the builder boss sends and receives all SM messages on their behalf, using appropriate
SCRAMNet memory regions.

The Scanner Manager contains three tasks: registry (tsmReg), hotline(tsmHot), dis-
patcher (tsmDisp), which should be running. *°

49This is checked explicitly simply by logging on an SCPU and list the running tasks; e.g., telnet
b0ebl2 ;i ; logout (for explanation of VxWorks commands refer to a previous section).

0This is checked explicitly simply by logging in to the SM and list the running tasks: telnet b0eb10
; 1; logout

42

2.2 SCRAMNet

SCRAMNet-i What is SCRAMNet for

SCRAMNet (Shared Common Random Access Memory Network) is a real-time ap-
plications network. It is used as a control network among the EVB components.
[t connects Scanner Manager, Trigger Supervisor, SCPUs (through VMS SCRAM-
Net module) and Converter nodes (through SCRAMNet PCI card) in a serial-ring
network.

The ring sequence is the following:

oo = SM — b013c01 — ... — b0[3c16 — b0eb25 — b0eb24 —
...(even SCPU #s)...— b0ebl2 — b0ebll — ... (odd SCPU #s)... —
b0eb23 — b0tsi00 — SM — ...

Each processor on the network has access to its own local copy of shared memory,
which is rapidly updated.

It is a replicated shared memory — any data written into memory is automatically
sent to the same shared memory location in all nodes on the network.

It uses paired-fiber-optic transmission media.
Some facts about SCRAMNet:

the SCRAMNet cards in each node communicate over a serial ring architecture
e 150-megabit/second fiber optic communication system
e network transfer rate up to 16.7 MB/s

e A datum is communicated when a CPU makes a high-level language statement:
A=B, where the variable A is located in the shared-memory window of the SCRAM-
Net card. Within microseconds all other CPUs on the network have the same variable
A in their shared-memory areas. The SCRAMNet card does this immediately and
automatically by passing both the datum and the datum address over the network.
The variable is written to the same relative shared-memory address in each com-
puter’s shared-memory area by the receiving SCRAMNet cards.

e data transfer is handled at the hardware level, no software required
e all nodes have equal priority for network bandwidth.

e 256 node capacity in a ring

SCRAMNet-ii SCRAMNet card for VxWorks, for PC

When a host node writes to the shared memory, the proper handshaking logic is
supplied by SCRAMNet host adapters.

Each SCPU connects via backplane to a VME6U module that occupies one slot on
the VME bus chassis, and this module connects directly to a bypass switch and to
the SCRAMNet network.

43

Figure 7: SCRAMNet cards: (i) VME6U module and (ii) PCT card.

Converter nodes communicate to the SCRAMNet network through a PCI card.

Both boards have a pair of transmitter (Tx), a pair of receiver (Rx) optical connec-
tions, and a power connection.

SCRAMNet-iii Bypass switch

A ring configuration network depends on connectivity — in case any one node in
the network would not be able to retransmit incoming messages, the ring would be
broken.

A bypass switch, included together with each node, automatically provides an al-
ternative route for the optical message to travel. In case any node breaks (e.g. is
un-powered) or is chosen not to be included in the ring, it is bypassed.

NODE NODE NCODE
1 2

1 - iy
ol OO

NODE NODE
4 5

z
=8
m

Figure 8: SCRAMNet bypass switch (i) assures serial ring (ii) continuation.
This way it increases the system’s fault tolerance and flexibility.

SCRAMNet-iv Which LED indicators must/must not be lit in normal mode

Sets of LED indicators on both types of SCRAMNet boards may be useful in de-
tecting an eventual malfunction.

The VME modules have the following indicators:

44

e insert indicates proper insertion of node into the network (green) [must be
on]

e message waiting (green)

e carrier detect indicates a valid pair of transmit lights from the previous node
into this node’s receiver pair (green) [must be on]

e error (yellow)
e native message lights when message received was originated by the node

e foreign message lights when message received is from another node
The PCI cards have the following indicators:
e insert indicates proper insertion of node into the network (green) [must be
on|

e carrier detect indicates a valid pair of transmit lights from the previous node
into this node’s receiver pair (green) [must be on]

SCRAMNet-v How EVB uses SCRAMNet, SCRAMNet memory, areas re-
served for computer-computer communications, how to run and under-
stand output of dumpEvb tool

The SCRAMNet (RAM) memory is divided into 51 regions. Each node writes to a
particular region. The communication of each node to SM is given by writing and
reading messages that are sequentially written to the specified memory regions.

The 51 memory regions are reserved > for the following communications.

e SM uses one region to broadcast to all SCPUs (0)
Each SCPU uses its own region to talk to the SM (1-16)

Each Builder Boss (on Converter nodes) uses one region to send to the SM
(17-32)

SM uses one region to send to each Builder Boss (33-48)

Scanner Manager to Trigger Manager (49)

Trigger Manager to Scanner Manager (50)

In parenthesis are indicated the region sequence identifiers. These can be given as
argument to the dumpEvb tool, > which is useful to check the event processing
status in the specified component. For example,

1 This can be checked explicitly by looking at the header file $CDFEVB_SM_DIR/inc/evbScram.h in
b013pcom1 (need to previously setup cdfevb_sm).
52Which can be used on any SCPU.

45

[evbproxy@b0l3gatel ~] telnet bOebl2
-> dumpEvb (50)

*xxkkkkkkkkk TM->SM scramnet messages s kkkskskskskk

address slot Word_1 Word_4 break part. event command

0xd3019000 O 10002685 00000002 0 9861 Event ready
0xd3019018 1 10002686 00004002 0 9862 Event ready
0xd30197e0 84 10002684 00000002 0 9860 Event ready

value = 1 = 0Ox1
-> logout

Each message is composed of 6 words (1 word = 32 bit). Each of the memory
regions has a size of 2 Kb, and a capacity of 512 words. Each can then accumulate
85 messages, as shown in the example above.

Advanced

SCRAMNet-vi How to explicitly test SCRAMNet communications from Linux
and VxWorks

In VxWorks, the (global) variable scramnet_ram points to the beginning of SCRAM-
Net memory. The commands d and m can then be used do respectively display and
modify a given memory slot, specified using the scramnet_ram pointer. 53

To test where the SCRAMNet communications start to fail, one could login in a
given SCPU, and use the command m to propagate a given memory modification,
and by logging on directly to other SCPUs in the ring sequence try to find (using
the command m) where the propagation ceases to occur.

SCRAMNet-vii Full understanding of the EVB messages

As mentioned above, a command is a sequence of 6 words each 32 bit long. A
variety of information is encoded in the command via bit patterns, such as event ID,
partition number, action to be taken, etc. In most of the cases, Scanner Manager
issues commands and collects acknowledgments from SCPUs and L3 converters,
where acknowledgments are just repetitions of the original command.

One can generally figure out how to decode SCRAMNet commands by reading the
source code. The bit patterns and word contents are defined in the file SCDF EV B_.SM _DIR/inc/evl
and the SCRAMNet regions for communications between all components are defined

53 An example of this, after login into an SCPU, could be d scramnet_ram,4,512 ; or something like
d scramnet_ram+2048.50 .

46

in SCDFEVB_SM_DIR/inc/evbScram.h; one has to run (as evbproxy@gatel)
setupedfevb_sm for the variable SCDFEV B_SM _DIR to be defined.

Of course, a convenient way to learn about the SCRAMNet command contents is
to talk to the primary EVB expert. 5

54 At this time, Steve Tether.

47

2.3 Hardware database for EVB

Hardware dbase -i What is hardware database, how to connect to it using cardEd-
itor

The CDF Hardware database is an ORACLE database that contains full information
about all DAQ electronics. ® It includes e.g. which SCPUs are currently marked
online, which VRBs belong to which crates and again which are marked online.

The gui application allowing to check and edit (mark components online/offline)
database configuration is the hardware database selector, and can be displayed
from the online machines as follows

setup fer
cardEditor

The Ace Control panel too has a feature that allows to change the online/offline
status of a L3 PC. The Fzpert’s Hall has a button which allows to get controls for
the ORACLE database. The GUI represents each 1.3 PC by a check button, which
is checked if the PC is marked online. The user can change the status of the PCs
and commit the changes made to the database, if in possess of a database account
with sufficient privileges. When the GUI is properly closed, a log file is written
in /cdf/log/cdfevb/. It contains all the operations performed during the database
updating session, and whether the changes have been committed or not.

Hardware dbase -ii What are all the tables: crates, tracers, racks, etc.

The database is the cross- referenced set of tables. Its structure resembles the
physical layout: racks contain crates, these contain cards (CPUs, VRBs, tracers,
etc.).

Hardware dbase -iii What is online flag for a component, what does it matter if
it is on or off, by whom it is used

One can mark a given component in the database on or off by selecting the compo-
nent in cardEditor, choose Edit/View from the Edit menu, and change the value of
the ONLINEFLAG to 0 (off) or 1 (on). When EVB/L3 proxies are started, this is
checked. If a component is marked offline (0) it will not be used in the subsequent
run.

Hardware dbase -iv Where to find entries for SCPUs

In cardEditor, descend into appropriate racks to find SCPUs — i.e. DAQ_VRB_00
or SVX_VRB_03.

55The connection happens during ”Partition” transition.

48

Hardware dbase -v How to find out which VRB is located in which EVB crate
and what FE crates are connected to that VRB

From online machines, hdump allows to find connections between tables.

setup fer
hdump

Then, click on buttons correspondent to VRBtoTracers or VRBtoFIBs.

Hardware dbase -vi How to change database entry
In order to change a database entry one needs to have an oracle db account.

In cardEditor need to change database connection and only then select the compo-
nent and edit the intended entry.

49

2.4 EVB proxy account

Proxy account-i How to log in for yourself and for the Aces

Login into evbproxy account
ssh -1 evbproxy b0l3pcoml

Logging on to the Gateway is allowed only from the CDF online cluster, and require
valid kerberos tickets.

Access to the account is restricted, and in case one is not allowed to login directly,
it may be necessary to login firstly to bOdap57 as cdfdaq and from there get the
proper kerberos credentials. 7%

Proxy account-ii .cshrc file, what environment has to be set

The account’s environment is set in .cshre file. Setups include setting up ups prod-
ucts, both local and from the mounted online ups directory, > and setting up various
environment variables. %8

Proxy account-iii How to run ace control panel

In order to run the ace control panel for EVB and L3, one needs to login to
b0l3pcom1 and run ace.

For example (using one of the computers in the Control Room)

<b0dap57.fnal.gov> xhost 4+ b013pcomi
<b0dap57.fnal.gov> ssh b0l3pcoml -1 evbproxy
[evbproxy@b0l3gatel ~] setenv DISPLAY b0Odap57:0.0
[evbproxy@b0l3gatel ~] ace

Proxy account-iv. What is zephyr, how to run zephyr window, what it’s used for

Zephyr is a message transport and delivery system — it is a way for users and
machines to send real-time (nearly instantaneous) messages to each other.

The primary process that Zephyr uses is zwgc (the main zephyr client), or the
Zephyr WindowGram Client, which is responsible for displaying zephyr notices.

The zephyr window is run by typing

°6To do that, need to type: setup kerberos; /usr/krb5/bin/kinit -k -t /var/adm/krb5/cdfdaq.keytab;
cdfdaq/cdf/‘hostname

STIncluding: hardware database (hdwdb), zephyr, cdfevb_ace, cdfevb_proxy, merlin, oracle, fer, java.
58As Java’s CLASSPATH, ...

20

[evbproxy@b0l3gatel ~] green

The zephyr messaging system listens to informational, warning and error messages
from SM, SCPUs to whomever cares to listen (i.e., subscribes). Those error messages
that are most important will be forwarded to CDF Error Logger automatically (by
ZMConverter).

The green window is used for more in-depth problem debugging.

ol

2.5 EVB proxy process

Proxy process-i Where it is run

EVB proxy runs in bOl3pcoml.

Proxy process-ii. What are necessary supporting processes

In addition to EvbProxy, which is responsible for Run Control — EVB communi-
cations in general, some processes need to be permanently running: zwgc (Zephyr
WindowGram Client) and ZMConverter (Zephyr-Merlin converter), which * are
responsible for transmission of error messages from SCPUs and SM to Error Logger
and Run Control.

pipe

client
LI EWgC

Zephyr
messages

Elllllllclolrz)!zllllllllllll EVB p[‘ﬂxy

Figure 9: EVB monitoring processes.

I

SM
SCPUs

Proxy process-iii How to check if it is alive

The easiest way to check this is to use the corresponding button in the Ace Control
Panel.

Proxy process-iv. Where are the log files

The various processes referred to above have their correspondent log files.

e EvbProry b0l3pcoml:/cdf/log/cdfevb/evbproxy.... .log
e zwge bOl3pcoml:/cdf/evbproxy/proxy.zwgc.log
e ZMConverter b0l3pcoml:/cdf/evbproxy/proxy.converter.log

Additionally, whenever ’cleanup EVB’ is performed, a log file is created
e b0I3pcoml:/cdf/log/cdfevb/cleanup-. .. log

with the information entered as the reason for the action.

*These are actually piped together, zwgc ...| ZMConverter .

52

LEVEL 3

3 Level 3

3.1 Level3 dataflow mechanics

Dataflow-i Converters, Processors and Outputs

For a given event, the various data pieces put together by the Event Builder system
are delivered to a unique Converter node. The Converter passes the data then to
one available Processor node in its respective subfarm. On the Processor, data
are reformatted and filtered. In case the event passes successfully both reformatter
checks and filter requirements, it is passed on to the Output node associated with
the subfarm to which the node belongs to (each Output node is associated with a
pair of subfarms). From there it is transferred to the CSL, for further monitoring
and storage.

Dataflow-ii 13_node: input, analysis chains and output

Data flow at the Level 3 farm is managed by the 13_node executable. It exists in ev-
ery single node of the farm (Converters, Processors, and Outputs), and has the same
general structure. It is sequentially composed of input, analysis and output modules.

l

Input Module

l l

Analysis Analysis

Chain 0 Chain 1

l l

Cutput Module

!

Figure 10: Structure of 13_node.

Input Module

The following categories exist of the input module:

1. random input
It generates random data.

o4

2. file input
Gets data from a file.

3. network input (Converter nodes)
Obtains event from ATM network (15 ATM connections from SCPUs). 90

4. faucet input (Processor nodes)

5. sink input (Output nodes)

from ATM network from converter node from processor nodes
L[] eee |]] | [[[] eee []]
Network Input Faucet Input Sink Input

(converter node) (processor node) (output node)

' '

to analysis to analysis to analysis

Figure 11: Input modules used in normal data taking.

Analysis Chains

In the case of Converter and Output nodes, this is empty.

61

In the Processors, it is composed of two parallel chains (chain_0, chain_1) ®* each

containing reformatter, and filter interface.

Output Module

1. trash output

Event is discarded.

from analysis

Trash Output

—> {rash

60All other following module connections are via Ethernet.
61 Which are distributed by Linux — it’s not imposed that each should run on which CPU of the Processor
node.

95

2. file output

3. faucet output (Converter nodes)

One connection towards each Processor node in the associated subfarm.
4. sink output (Processor nodes)

5. drain output (Output nodes)
Connection to CSL.

from analysis from analysis)
| | from analysis
Faucet Output Sink Output Drain QOutput
(converter node) (processor node) (output node)
1L ¢
to processor nodes to output node CSL

Figure 12: Output modules used in normal data taking.

Dataflow-iii How all Level3 nodes connect to each other In the beginning of each
run the 13_node executables are started on all nodes and creating a chain of dataflow
through Level3. The sequence of startup and connections is important. Before
starting Level3, the two adjacent system have to be running and ready, namely the
Event Builder and the CSL.

The general scheme is starting components outside-in. After EVB/CSL are ready,
the 13_node executables are started on Converters and Outputs. Converter nodes
establish ATM connections and exchange initialization messages with the Event
Builder. Output nodes connect to the CSL. At this time Converters do not know
where to send data and Output nodes do not know from where to receive data.

Finally, Processor nodes are started. From their command line options Processors
know which Converters and Outputs to connect to. Indeed, Converter and Output
nodes are presented as servers to the Processor nodes, and receive requests from
these, which themselves behave as clients.

At the end we have a continuous connection from EVB to CSL. The procedure at
the end of each run is reversed: shut down Processor nodes, then Converters and
Outputs, and finally the Event Builder and the CSL.

Dataflow-iv 13_node command line options

The behavior of the L3 data flow executable 13_node is controlled by a number of
command line arguments. First, the parameters define which input and output mod-
ules will be used by 13_node, therefore defining whether the node will behave as a

26

Converter, Processor or an Output. Parameters for Processor nodes are most numer-
ous and include specifications for L3 filter executables, reformatter constants/flags,
etc that come to level3 from Run Control for each run. Parameters common to all
types of nodes include the partition number, timestamp, event size limit, whether
to connect to monitoring system and so forth. Examples of 13_node command lines
can be seen in 13proxy log files. One can learn about all available options from
looking at the docs in the beginning of $L.3_SRCDIR,/programs/13_node.cc of level3
package.

Several examples are also given below.

Command line to run 13_node as a Converter:

Input-Network, output-Trash:

$L3_BINDIR/13_node --partition=7 --size=1048576 --input-network=b0Oebl10 --host=b013cOla-a
--builders=3 --output-trash --null-reformatter >&
$L3_LOGDIR/13_node/13_node.out_0005181310 &

Input-Network, output->Processors:

$L3_BINDIR/13_node --partition=7 --size=1048576 --input-network=b0ebl0 --host=b01l3cOla-a
--builders=3 --output-faucet --null-reformatter >&
$L3_LOGDIR/13_node/13_node.out_0005181311 &

Command line to run 13_node as a Processor:

Input-Faucet, output->0utput Node

$L3_BINDIR/13_node --partition=6 --size=1048576 --input-faucet=b013c0la:0 --builders=4
--output-sink=b013u04a --converter-reformatter
--filter=/home/ikrav/level3_developmentl/level3/control/bin/m486-unknown-1inux2/13_fake_filter:
/home/ikrav/level3_developmentl/level3/control/node_io/command_input.tcl

—--run-number=1 --run-type=1 --expt-type=9 >&

$L3_LOGDIR/13_node/13_node.out_0005171530 &

Same but using the new filter

$L3_BINDIR/13_node --partition=6 --size=1048576 --input-faucet=b013c0la:0 --builders=4
—--output-sink=b013ulO4a --converter-reformatter
--filter=$L3_FILTER_DIR/L3_test.csh:$L3_FILTER_DIR/L3_test.tcl --run-number=1
--run-type=1 --expt-type=9 --force-stream=1 >&
$L3_LOGDIR/13_node/13_node.out_0006081036 &

Command line to run 13_node as an Output:

$L3_BINDIR/13_node --partition=6 --size=1048576 --input-sink --host=a --host=b
--builders=4 --output-trash --null-reformatter >&
$L3_LOGDIR/13_node/13_node.out_0006081030 &

Moderately Advanced

Dataflow-v How to run a simple 13_node test on a single node (random data—trash)

An appropriate command line for 13_node can allow one to run 13_node by itself,
making it generate data at the input and discard at the output. %2 Here is such an
example:

62This is sometimes useful when one wants to test a processor node before including it into the system.

57

$L3_BINDIR/13_node --partition=7 --size=1048576
-—input-random --fragment-size=16536
--host=b013cO0la-a --builders=3
--output-trash --null-reformatter

In order to end 13_node gracefully, and clean up, one executes:

$L3_CSHDIR/13_end_node_control

Dataflow-vi What are circular buffers, how to print them with 13_debug_dump
command

Circular buffers are useful for additional dataflow (debugging) information, not
stored in log files. They are fixed size (e.g. ~ 20Kb) memory buffers that keeps on
being ’circularly’” written to. Circular buffers can be printed with

$L3_BINDIR/13 _dump_circular <id>

There are also cstate and zstate arrays containing respectively dataflow and filter
status information. These can be dumped with

$L3_BINDIR/13 _dump_cstate
$L3_BINDIR/13_dump _xstate

Circular buffers, shared memory, process status, can all be printed and saved (on
an internal node) using the following script

cd /log/13_node
$L3_CSHDIR/13_debug_dump 13_node.out_# > myfile.log

which runs itself ipcs, cstate and xstate dumps as above.

28

3.2 Reformatter

Reformatter-i What it is for

The role of the reformatter is twofold. It performs several checks for data integrity.
If some of these fail, a reformatter error is generated and the event is discarded right
away. % Additionally, the reformatter rearranges the event pieces, modifying the
raw event format (mini banks), which becomes now more ’physics-like’ (TRYBOS

format). ¢

The reformatter package is named RAWREF (CVS/UPS). It has no independent
executable; it is constituted by a set of libraries that are linked to 13_node.

Reformatter-ii Where reformatter errors appear (13 logs, error logger)

Among the various reformatter checks % are, for example, the length of a frag-
ment, at each level, the event ID, predefined bit patterns, and so on. There are

correspondingly ~ 40 types of possible errors.

Every reformatter instance (two per Processor node) saves one event with an error
of each kind . These error events are saved in each Processor node as

/cdf/log/13_node/error_event_x_yy

where x € {0, 1} denotes the chain, and yy the error type. Below is the correspon-

dence between the types and codes of the various errors.

Error Codes

Error Codes

C-MINI-NTOTL I-021
C-MINI-INSTA I-022
C-MINI-MXBUF I-023
C-MINI-NEXT? I-024
C-MINI-NAME? I-025
C-MINI-TYPE? I-026
C-LINKMXMINI I-027
C-LINK2-LONG I-028
C-LINKINCWCO I-029
C-LINKSIL2MI I-030
C-LINK-CWORD I-031
C-LINK-TRACE I-032
C-VRB-MXLINK I-033
C-VRB-2-LONG I-034
C-VRB-2SHORT I-035
C-VRB-MAXLNK I-036
C-VRB-HEADER I-037
C-VRB-DLINCO I-038

63Ideally, of course, no events would be discarded

currently observed.

64Following the reformatter, the event treated by the filter will be in a flat ROOT format.
65These are data-driven: based on the current header, the reformatter knows how to check for the

following header.

29

C-SCPUMAXVRB
C-EVT-MXSCPU
C-EVT-2-LONG
C-EVTINCEVTN
C-EVT-NOTFRD
C-BNK-2-LONG
C-BNKNOTEVEN
C-BNKNIMTYPE
C-BNKNAMEINC
C-BNK-NTOTAL
C-BNK-INSTAN
C-BNK-VRBWRD
C-BNK-NOTFOU
C-BNK-E2LONG
C-BNK-TRAC-1
C-BNK-TRAC-2
C-BNK-SI-DUP
C-EVNT-LRIH?

at this stage; in practice, a rate of less than 1% is

I-019 C-VRB-STAICO I-020 C-VRB-CLEANP

Errors are reported to log files, saved on the corresponding Processor node, as (#
denotes time stamp)

/cdf/log/13_node/13_node.out_#

and are pre-scaled (the first ten are saved, and then 1 each 1000).

Errors are also sent to the external network, and are displayed in the error logger
and in the Level3 display in the control room.

Reformatter-iii How to decode reformatter errors

Use reformatter decoder button in Ace Control Panel, by entering the information
(namely a set of four numbers, identifying the partition, SCPU, VRB, Link) dis-
played both in the Level & Display for each Processor (click on a node number,
and display corresponding error messages) or in the Error Logger. This way the
offending sub-detector can be identified. 5

Reformatter-iv How to understand reformatter errors

This is a difficult matter, and there will be no attempt of describing it here. 7

Reformatter-v What to do about reformatter errors once they start to happen

In general, if the rate of reformatter errors is bigger than some threshold, currently
agreed on 1% over the last 30s, the respective expert (i.e. responsible for the
offending system) should be paged.

The error is reported in two places: in the Level3 Display, where the accumulated
reformatter rate for the run is indicated, that number will turn red; also, a warning
’Orange Window’ will be popped-up by RC (again based on the instantaneous rate,
whenever it passes the threshold) containing explicit instructions for the shift crew.

66Tn case a fib channel is identified, the corresponding ladder will have to be marked offline for the rest
of the store by a silicon expert.

S7If the problem (after reformatter decoding) points to silicon, it will most probably not be related to
EVB. But there may be problems e.g. in VRB headers; or in VRB channels, suggesting in this case FE
problems.

60

3.3 L3 filter

L3 filter-i Who is the group of people responsible for it
The University of Oxford group.

L3 filter-ii How it comes into L3 farm

The first step of distributing the filter packages is to move the corresponding three
tarballs from an online computer % to b0l3gate2 (which occurs during cold start
transition). From there, the distribution over the Processor nodes is made with the
13_byteline program.

L3 filter-iii The different packages: filter, calib, tcl

The filter is run on the reformatted event. It has common features to the offline
analysis framework, uses AC++, tcl input, defining also trigger paths.

The package structure contains tcl, calib(ration), and filter packages.

L3 filter-iv. What are trigger tables

A trigger table is a specification of a set of trigger paths. A trigger path is a unique
combination of consecutive L1, L2, and L3 triggers. For a given event, a trigger bit
is set for each trigger; the event will satisfy a trigger path if it satisfies the AND of
the corresponding L1, L2, and L3 trigger bits.

Past Level3, different trigger paths will feed a unique dataset; datasets will be
written to various streams.

L3 filter-v. Where are filters found on 13 nodes

Each Processor node has its own copies of the filter packages (a few versions are
kept), archived in the form of tarballs in the directory

/cdf/level3/filter/tar/
and unpacked in the directories

/cdf/level3/filter/bin/
/cdf/level3d/filter/calib/
/cdf/level3/filter/1lib/
/cdf/level3/filter/tcl/

%8This computer is bOdap31, from which the /cdf /code — level3 directory in b0l3pcom?2 is mounted
from.

61

L3 filter-vi How 13_node starts filter and how it communicates with it

Each of the two analysis chains, which are part of 13_node in the Processor nodes,
contains a filter interface module. It communicates, through message queues, to the
L3 I/0 interface of the filter executable, L3exe+ (see Figure 13).

from input module

~

ilter interface

analysis chain

to ouiput modile

Figure 13: 13_node — filter communications.

L3 filters are started by the dataflow executable via executing a shell script
$L3_.CSHDIR/I3_ start_filter +flags

The filters run as separate Linux processes, distinct from the dataflow process. A
L3 filter requires that a standard CDF Offline environment is initialized, and all
necessary setups are done in the 13_start_filter script, including all environment
variables and pointers to shared libraries that came with the filter tarball.

L3 filter as a standard Offline AC++ executable has an input and output module,
which in case of .3 are Level3Input and Level30utput modules. These input and
output modules of the filters communicate with the analysis modules in dataflow
executable 13_node. Each chain of 13_node contains one filter analysis module and
each filter analysis module communicates with its filter executable process, passing
event back and forth. The events themselves are kept in a large shared memory
segment and are available to both dataflow and filter processes at all times. Message
queues between 13_node and L3 filters allow 13_node to pass commands and get filter
decisions back.

L3 filter-vii Where to find info if filters fail to start

Such information can be found either in 13_node or L3exe log files.

L3 filter-viii Where are filter log files, how to tell if a filter has crashed or not
Filter log files are located in each Processor, in /cdf/log/13_node_exe_# .

62

L3 filter-ix What happens if filter crashes, what about core files
Filter crashes generate core files in the corresponding Processor nodes.

A crashed filter disables its analysis chain but does not kill 13_node on the affected
Processor node. The dataflow executable detects filter crash and generates an error
message sent to L3 display and error logger. At the same time the event that crashed
the filter is marked badbut nevertheless is sent to CSL to be saved in a special file. If
both filters have crashed on a Processor node, the 13_node stays alive but events do
not go through this processor anymore. Problems such as crashed filters are always
indicated on L3 display.

At the end of the run, 13proxy itself saves some of the possibly existing core files,
which are automatically sent, together with the log files, to online computers via
NF'S; and an email is automatically sent to the L3 filter group.

63

3.4 Relay

Relay-i What is relay

The primary purpose of the Relay system is to execute commands on remote com-
puters — e.g., by 13proxy over the internal nodes of the .3 farm.

Relay-ii What is orbacus/CORBA

Corba (acronym for Common Object Request Broker Architecture) is a general standard
for working with distributed objects, i.e. an infrastructure that computer applications use
to work together over networks. It allows the interconnection of objects and applications,
regardless of the programming language of the applications, machine architecture, oper-
ating system, and network. An application is in servers that must handle large number
of clients — as is the case of the Level 3 farm.

A client accesses an object by issuing a request to the object. The intermediary is referred
to as an Object Request Broker (ORB). ORB negotiates between request messages from
clients and object servers. Clients request services from objects (a.k.a. servers) through a
well-defined interface, specified in IDL (Interface Definition Language). CORBA separates
interface from implementation providing language-neutral types that make it possible to
call objects across language and operating system boundaries. Using CORBA IDL, it is
possible to make existing code look like an object on the ORB, even if it’s implemented in,

say, C++. Basically the code can be written in any language and then can be connected
through ORB.

C Chent)UGme Im‘plamantstlorJ

Nit? |

ORB

Figure 14: CORBA communication: client sends request to server through ORB.

There are various CORBA compliant ORB s which support various platforms and pro-
gramming language mappings. E.g. ORBacus (OmniBroker), offers C++ and Java map-
pings (used in level 3 farm), ILU (Inter-Language Unification) includes IDL compilers for
C, C++ mappings and supports VxWorks (used in EVB).

Orbacus exists in all L3 PCs, its UPS package being OOC; on the Gateways a
code generator is run while elsewhere shared libraries are used. Client, server ob-

jects, built for our conditions, are included in CVS/UPS package Relay, located in
[cdf [level3/ filter /relay.

64

This also is the framework on which the Monitoring system is based.

Relay-iii What is relay map

This map defines the network architecture. It is generated automatically by 13proxy
from Hardware database.

It can be found in 13proxy and relay log files; e.g.:

b013gate2> cd /cdf/log/13proxy
b013gate2> less 13proxy.out_# | grep map

Relay-iv. Which processes have to be found on which nodes

The two main relay processes are denoted RelayService and RemoteServer; the
former is responsible for forwarding requests to the following node, while the latter
executes commands locally.

RemoteServer exists in every single internal node of the farm (Processors, Convert-
ers, Outputs).

RelayService is run on Output node b013u01 (which provides forwarding to the other
Output nodes and the Converters) and on the Converter nodes (to the Processor
nodes in the sub-farm).

Gateway2 contains the relay client object, built in Level3 proxy.

To check for running relay processes one can use something like %

b013gate2> ssh b0l3u0l ’ps auxwww | grep Re’
or
b013gate2> $L3_CSHDIR/13_all nodes_exe +out stdout
’hostname; ps auxwww | grep RemoteServer’

The log files — which are created each time a new relay is started — are located, on
each Processor node, in

/cdf/log/13_relay_server/RemoteServer.out_#

Relay-v How long it takes to run a command on the entire farm

It takes ~ 15s to run a simple command on the farm and return.

69Can also check netstat -p.

65

Gateway 2
L3 proxy

| Relay client |

Output u01
fRemoteServer)

—
mervice\

1

Converter c01

Converter cl16

Output n02
(RemoeServid)
Output u03 001 {RemoteServer) o 229 {RemoteServer) o |
(RemorServi)

002 {RemoteServer) 230 fRemoteServer)
Output n08
(RemoieServer) o 016 (Remoteferven) o 243 {(RemoteServer) o —

Figure 15: L3 Relay system.

Relay-vi Where relay is used

Relay is currently used for two purposes. It is used by 13proxy to run the farm
during data taking, and to distribute code (executables, etc) over the farm.

Relay-vii How to restart relay from clean state and when it is needed to be
done

Relay is started from a clean state by starting 13proxy after exiting relay processes
$L3_CSHDIR/13_all nodes_exe +out stdout ’killall RelayService RemoteServer’
This will be necessary whenever (i) environment variables of the 13proxy account

have been modified, (ii) hardware database has been changed, or (iii) 13proxy gets
stuck for unknown reason on starting up.

Relay-viii If relay does not start, how to find out why; trace the problem going
along the relay tree, finding failed mode, how to restore it

66

Failures may occur whenever e.g. a node hangs or an executable crashes. A sug-
gested procedure should be to descend through the relay map, explicitly check if
RelayService and then RemoteServer exist in the corresponding nodes. Once identi-
fied the first problematic node along the relay map, one should try to understand the
problem itself — e.g.check network connections with netstat command, ... (otherwise,
rebooting the Processor node may be a last rescue alternative).

It will be necessary, or convenient, sometimes to kill the relay processes, e.g.

b013gate2> $L3_CSHDIR/13_all nodes_exe +out stdout
’killall -9 RelayService RemoteServer’

which will then need to be re-initiated, done simply by re-starting 13proxy (from
Ace Control Panel).

If a node is down for whatever reason and cannot be restored, it should be marked
offline in the hardware database, so that Relay will not get stuck on it.

67

3.5 Level3 proxy

L3 Proxy -i What it is for

Level3 proxy provides the connection between the Level3 internal farm and the
outside world. It is a process constantly running on b0l3pcom2.

Effectively it runs the Level3 farm. It implements the states machine, as instructed

by run control (RC), issuing appropriate commands over the farm using the Relay
system. It is based on ROOT. Uses ORBACUS for internal and SmartSockets for
external communications.

L3 Proxy -ii How to check if it is alive, where are the log files, understand the
log files

It can be checked that it’s alive from the Ace Control Panel. Alternatively, one can
also check L3 Display and L3 ’health bar’ on the main DAQMON window.

The log files are located in Gateway2, in

/cdf/log/13proxy/13proxy.out_#

L3 Proxy -iii What is the conceptual structure of the program

Its structure is formed of communications, actions and relay parts (i.e. objects);
see Figure 16.

Lewveld proxy

B e

Figure 16: Level3 proxy structure.

L3 Proxy -iv How 13proxy is related to ROOT

Its classes are derived from ROOT’s T'Object class. SmartSockets usage is hidden
(encapsulated) from ROOT to avoid linking conflicts.

L3 Proxy -v. Communication between Run Control and 13proxy (transition and
configuration messages)

68

Run Control sends two messages in sequence for Partition and Cold/Warm Start.
Namely: SetPartition and L3ReadoutList ™ for Partition; transition message and
L3ReadoutList for Cold/Warm Start; transition message only on any other transi-
tion.

L3 Proxy -vi Heartbeat and ping error messages

Messages, denoted heartbeat, are periodically sent from 13proxy to RTServer. The
objective is to confirm that 13proxy is alive. These messages also contain information
about the partitions, and are responsible for the partition status bars (with colors
green /yellow /purple, and last heartbeat) at the bottom of the L3 Display.

All the nodes of the L3 farm are also ping-ed regularly; if a node cannot be ping-ed,
it will appear in black on the L3 Display.

L3 Proxy -vii What is done by 13proxy during the state transitions

The start up actions performed by 13 proxy are:

1. Connect to the hardware database

Read all nodes that are online, i.e. the L3 farm configuration
2. Connect to RTServer, and listen to transition messages from RC

3. Start relay throughout the farm

The 13 proxy actions performed during each state transition are as follows.

a) Partition transition
. clean-up nodes to be used in the partition
. start monitoring: [3-mon_reporter (on all nodes)
. start dataflow executable, [3_node on Converter and Output nodes

1
2
3
4. start additional monitoring programs (EventFunnels, [3-mon_clients)
5. connect all monitoring into one net

6

. reply to RC

These actions are coded into the actions part of 13 proxy.
b) Cold Start

1. handle tcl package

e download package from online computers to the Gateway !
e distribute it over all Processor nodes

""Which contains information relative e.g. to run, reformatter, and filter parameters.
"160dap31 : /cdf [code — level3, NFS-mounted.

69

e expand™ tarball

2. handle calib package
As above.

3. handle filter package
As above.

4. start 13_node on Processor nodes, and final monitoring pieces (that connect to
these nodes) ™

c¢) Warm Start

1. check existence of tcl and filter packages, and distribute calib package

2. start 13_.node on Processor nodes, as well as missing monitoring

d) Activate Do nothing; just change state variable.
Note: This is similar to Ready and Idle states.
e) End

1. end 13_.node on Processor nodes (via msgQ’s)

2. collect end of run (EoR) summary information, and send it to RC

3. collect possibly existing L3 filter core files, which are to be automatically sent
to L3 software experts

f) Abort

1. end 13_node on Processor nodes

2. collect run summaries ™

g) Reset

1. stop 13_node on Converter and Output nodes

2. stop all monitoring processes (on Converter, Processor and appropriate Output
nodes)

3. final cleanup (close everything in all nodes)

L3 Proxy -viii What is End Of Run summary

During End or Abort transition, 13proxy gets statistics from all the nodes, puts
them together and sends such information to Run Control, which will then save it
to database.

The run summary is also saved in the 13proxy log file; below is an example. ™

"2And check.

"3This is the step that most typically may give problems.

" Core files are not collected, as occurs in End transition.

"5Statistics for Output nodes are currently disabled; the fact that an Output node can belong to two
different partitions makes the process troublesome in this case.

70

run number : 142178
partition : 0
converter nodes : 15
number of chains per node : 2
number of analyses per chain : 1
input : 5119
input errors : 0
output : 5119
output errors : 0
processor nodes : 215
number of chains per node : 2
number of analyses per chain : 2
input : 5119
input errors : 0
reformatter pass : 5119
fail : 0
filter pass : 5119
fail : 0
output : 5593
output errors : 0
output nodes : -1

number of chains per node
number of analyses per chain :
input
input errors
output
output errors

L3 Proxy -ix How to trace a problem along the chain Transition Failure, 13proxy
log file, Relay log files, local CV/PR/OUT log files and process status

This is more of a practical skill that is difficult to describe in full.

From the 13proxy log file it should be apparent what component of L3 farm is failing.
One has to descent via log files to the component that is giving the trouble.

For example, if one fails to get a filter/calib/tcl package from the online machines,
the problem is already visible from messages in 13proxy log files. If a problem occurs
on a particular node, one has to go deeper into the farm, and analyze it locally.
13proxy may report a relay failure associated with a particular node; this kind of
problem is easy to understand as well, most often the responsible node simply has
a crash of OS.

Slightly more confusing is failure to start on Partition or ColdStart while the respon-
sible node remains alive and well. In that case, one has to go to the RemoteServer

71

log file on the responsible node and check for the output of the command
$L3_CSHDIR/I3node_check_running REP CON MON

This command, initiated by I3proxy during a state transition, verifies that this
node - whether it is Converter, Processor or Output - has started properly all its
corresponding executables. The three arguments correspond to checking:

e REP: [3_mon_reporter, a part of monitoring system that sends out info/error
messages from 13_node

e CON: [3_node, the dataflow executable

e MON: [3_mon_server, a part of monitoring system sending info on state of
dataflow every 4 seconds

If the result of any of the above checks is non-zero, it indicates problems. Further
understanding of the problem can be gained from the analysis of the appropriate
log files: /log/13,0de/ directory for [3_node and /log/I3_box_monitor directory for
[3-mon_reporter and [3_mon_server programs.

72

3.6 L3 monitoring

L3 monitoring-i The general scheme

The L3 Monitoring system is based on CORBA. On the Gateway2 monitoring pro-
cesses are permanently running, while on the internal nodes they are started for
each run. The general structure of the Level3 monitoring system is depicted in the
figure below.

Clonverter Converter Converter

c01 co2 es cla
— eventsery ’7 eventsery eventsery fr—
Processors Processors Processors
{subfazern 1) ¥subfarm 2 P {subfarm 167}

G

Cutput wll Cutput w08
| EwentFunmel

Gateway 2

| { eventsery

s

Figure 17: Level3 farm Monitoring.

L3 monitoring-ii What programs run where

The processes 13_mon_reporter, which itself spawns eventserv, and 13_mon_server
are run on all internal (Converter, Processor, Output) nodes. The eventserv exe-
cutable is based on a standard CORBA implementation, that allows to receive and
send messages from/to many input/output sources via CORBA; it possesses queues
which are characterized by a FIFO structure.

On the first Processor node of each subfarm, there exists additionally EventFunnel.
Its purpose is to slow down the rate of messages. While its input is asynchronous,
it has a periodic output, sending all 4s its received, accumulated messages. The
eventserv and FventFunnel processes are connected together by 13_mon_connect;

73

this latter process is started by 13proxy in every node when appropriate and is later
ended, it is not found permanently running.

On Gateway?2 there is 13_mon_reporter, with its eventserv, and 13_mon_client.

[3_mon_client runs on Gateway2 and actually on all other nodes as well. It receives
from eventserv, does some sorting of the messages and then prints them to stdout.
On the internal nodes this stdout is directed to a log file. On Gateway?2, it is piped
into the stdin of MConverter.

MConverter is a java program, permanently running in Gateway2, that takes mes-
sages from the standard input and creates SmartSockect messages in Merlin format.

reformatter erars

1
% llS_mon_reporter} T
E =
- " A7 (T PPTTT
[eveniserv ": to Event Funnel
NLLNN]

l3_n0de] = J corh = |

= l l3_m0n_client)

a

r h] & Serve[}lllllllllfl(jll;}:‘l‘all
snim = =

J

log files

statistics

Figure 18: L3 Monitoring processes on an internal node.

Processor#¥l

(eventserv

ta
GatewayZ

Processor#?2

eventserv

Processor#N

eventserv

Figure 19: L3 Monitoring processes on a subfarm.

74

Statisitics

o N
g [ls_mon_reporter l
E LS 7 lclolr!)lallllllll-
= -
£ o
‘ [eveNiserv /13_mon_client]
%D = Jllclolr!)lallllllllllllllL T - :1
] = ‘e
g b = L E
a L3 FARM l(iolrllal'lllll: 'g
g (o EventFunnel’s) s 2
g
=} H
~
=
&

S
=
W
=
=
=
=
-

Figure 20: L3 Monitoring processes on Gateway?2.

L3 monitoring-iii What is the starting order, how connections occur

In general, servers are firstly started, to which clients connect. The sequence follows:

1. I3-mon_reporter, with eventserv ~ (on all nodes)

2. FventFunnel (on appropriate Processor nodes)

3. start 13_node dataflow executable (on Converter and Output nodes)
4. [3_mon_server (on Converter and Output nodes)

5. [3-mon_connect (on all nodes, at beginning)

6. 13_node dataflow executable (on Processor nodes)

7. 13-mon_server (on Processor nodes)

The sequence of actions identified in the items above occurs during the different
transitions as follows:

e Partition: start 1,2, 3,4, 5

e Warm start: start 6, 7

e Fnd: stop 7,6

e Abort: stop 7, attempt to stop 6 (otherwise kill it)
e Reset: stop ©5,4,3,2,1

"6Includes additionally the actions that take place during Abort state.

75

L3 monitoring-iv Where are the log files, what can be learned from them

Log files are created by all monitoring executables, and are found in the directory
/cdf/log/13_box_monitor
In particular, the following log files exist on the appropriate nodes: ™"

/cdf/log/13_box_monitor/13_mon reporter.out_#
/cdf/log/13_box_monitor/13_mon_server.out_#
/cdf/log/13_box monitor/13_mon_client.out_#
/cdf/log/13_box monitor/EventFunnel.out_#

L3 monitoring-v How to check if monitoring for a given node is working properly

To check the monitoring for a node one can look first to the L3 Display, and then
login to the node and check is all expected processes are up. The next step would
be start looking through the log files.

""13_mon_reporter.out_# contains log information of both I3-mon_reporter and eventserv.

76

3.7 L3 proxy account

Proxy account-i Log in

The directory of [$prory account is, together with the entire home directory, nfs-
mounted from bOI3pcom] in the entire farm.

In order to log in, as usual, one needs to go first to one of the Gateways, from
any online machine; from there the 13proxy user can automatically login, with no
password required, into any other node of the L3 farm. The following is an example.

b0dau30> ssh -1 13proxy b0l3pcom?2
Logged in to 13proxy account
Setting environment variables

b013gate2> ssh b013u01
Logged in to 13proxy account
Setting environment variables

b013u01>

Proxy account-ii What environment has to be set, .env file, dependence of en-
vironment on hostname

The environment for the account is set by the .env file. Here Gatewayl, Gateway?2
and all the internal nodes are set separately (and differently).

The primary difference here between the Gateways and the internal nodes is the
location of the level3 and relay code, and required UPS products, that are stored on
local drivers on each node. Another important distinction arises from different Linux
kernel versions used in Gatewayl/Converters and Gateway2/Outputs/Processors,
which requires different environments and setups.

Proxy account-iii Where is level3, reformatter and relay code
On the Gateways, the level3 and relay binaries are located in
13proxy/checkout /level3
13proxy/checkout /relay
while reformatter is properly linked in the former.

On the internal nodes (as seen before) the code is located in

/cdf [level3/ filter/

7

Proxy account-iv. What is local distribution of the code and how to do it

Specified level3 and relay code versions (denoted below as vx_y and vw_z, respec-
tively) can be distributed (after being successfully produced, with $L3_GMKDIR/gmake)
over the farm, using the [3_byteline program, "® from Gateway2, as follows.

b013gate2> cd $L3_GMKDIR
b0l3gate2> gmake distribute [DL3VER=vx_y] [DRLVER=vw_z]

The following sequence of actions take place in the process:

1. create tarballs

2. start relay ™

3. distribute with [3_byteline

4. expand tarballs (in all nodes)
5

. stop all relay executables on the farm

In order to guarantee that the old relay processes were exited, one does as follows

$L3_CSHDIR/13_all_nodes_exe +out stdout ’killall RelayService RemoteServer’

The next step is to specify the new version to be used in .env file, and start 13proxy.

A specified version of the code can as well be removed using
b013gate2> gmake remove [DL3VER=vx_y] [DRLVER=vw_z]

Note that for both distribute and remove either or both options DL3VER and
DRLVER can be given.

Proxy account-v What can be found in /cdf directory on all nodes

On the Gateways, the /cdf directory contains various needed NFS-mounted direc-
tories from online computers. From b0dap30 various products are made available.
Of particular importance here is the directory

bOdap31:/cdf/code-level3

containing the three filter packages.

On the internal nodes (where the only NFS-mounted partition is /home), the /cdf
directory is a separate partition (/dev/hdal on Processors), containing in particular
the filter code (/cdf /level3/ filter/), the log files (/cdf /log/), and UPS products

(/cdf [products]).

"8 As is the case for filter, seen before.
™The current, soon-to-be-old version of Relay is of course used at this stage.

78

b013gate2y Is /cdf
code-IRIX-# code-Linux-# code-common

code-level3 evbproxy level3

log lost+found products
b0l3gate2% Is | grep cdf

/dev/hdc10 /cdf
b0dau30:/cdf/code-common /cdf/code-common
b0dau30:/cdf/code-IRIX-# /cdf/code-IRIX-#
b0dap30:/cdf/code-Linux—# /cdf/code-Linux-#
bOdap31:/cdf/code-level3 /cdf/code-level3

b013gate2) ssh b013100 ’ Is /cdf’
level3 log products sdr upgradeutil

Proxy account-vi What is base key, what kinds are defined

In the original design of the level3 system it has been foreseen that different users

can run level3/relay/monitoring programs at the same time without conflicting
with each other. Each program of level3 package uses a predefined offset for IDs
when creating/connecting-to message queues and shared memory segments, as well

as in determining the network port numbers to connect/listen to. There is one envi-
ronment variable defining this constant offset for level3 dataflow and monitoring pro-
grams, L3_BASE_KFEY , and another one for Relay connections, RELAY _BASE_KFEY .
Both of these variables are set in /.env file of the 13proxy account. For the 13proxy
user both offsets are normally set to 024000.

79

EVB & LEVEL3 COMMON

4 A few topics common to both EVB/L3

4.1 Raw data format

Raw data format-i Where data is seen in raw format

On SCPUs, Converter, and input to Processor nodes.

Raw data format-ii How it is different from offline (roughly)

The structure of raw data is dictated by the detector readout; it is composed of
organized super-sets of data fragments reflecting the sequence part of sub-detector,
VRB, SCPU, whole event.

On the other hand, offline data is composed of banks by sub-detectors (e.g., all-COT
bank, all-SVX bank, ...).

The main change in the format of data occurs at the level of the reformatter on the
Processor nodes. The sets of SCPU fragments constituting a single event provided by
the Converter node are reformatted into TRYBOS format, and delivered in ROOT
format after passing the filter.

Raw data format-iii The exact details of VRB fragment structure for SVX and
non-SVX VRB crates

The VRB fragments are composed of an header and links; the links themselves are
made up of several banks, an header and a control part at the end. #

Difference between SVX and DAQ formats

Raw data format-iv Event Builder checks of VRB structure and most common
errors

The EVB performs various data quality checks, namely upon the VRB fragments,
among which the following.

e Consistency of event ID and control sequence at the end of each link of the
VRB fragment.

Merlin/EVB mnemonics: SCPU_TRACER_EVENT_ID, SCPU-P0-E-TracerEventId.

e Compatibility of VRB fragment total length with the sum of the lengths of its
channel components.
Merlin/EVB mnemonics: SCPU_BAD_CHANNEL_COUNTS, SCPU-P0-E-BadChannelCounts.

e Whether the total length of the VRB fragment is greater than 32B, less than
65528 B, and divisible by 8.

80Gee example in the Appendix.

81

Merlin/EVB mnemonics: SCPU_BAD_VRB_BYTE_COUNT, SCPU-P0-E-BadChannelCounts.

e Check on event size, 330K B being the buffer limit for a VRB.
Merlin/EVB mnemonics: SCPU_BUFFER_-OVERFLOW, SCPU-P0-E-BufferOverflow.

Raw data format-v Where errors are reported, effect on data taking and what
can be done about them

Errors are reported via Zephyr messaging. On the Gateway, ZMConverter also
sends some of them to RTServer (via SmartSockets). The messages appear in the
Zephyr display and Error Handler.

Advanced

Raw data format-vi How to do octal dumps of raw data files

Raw data files, e.g. saved by the reformatter, can be dumped using od. For a
specific example, od -v -t x4 data.raw | more.

Raw data format-vii The format of the full raw data file

In general, a full event is composed of the event header (includes message header
and event length) and of several SCPU fragments.

A SCPU fragment is composed of the SCPU header (includes SCPU length and
other SCPU info) and of several VRB fragments.

A VRB fragment is composed of the VRB header (includes VRB byte count and
status, link lengths) and of several link fragments.

A link fragment is composed of link header (includes link length, single word), of
several banks and of link control words.

A detailed explanation of DAQ VRB output data format is presented in the Ap-
pendix.

Raw data format-viii Be able to find errors in full files with corrupted data saved
by reformatter

Use octal dump ("od‘) on the raw data files, together with the raw data format
example given in the Appendix.

82

4.2 EVB/L3 Ace control panel

Ace control panel-i How to start

Having logged in as evbproxy user in bOl3pcoml,

[evbproxy@b0l3gatel ~]$ ace
[evbproxy@b0l3gatel ~]$ which ace
ace: aliased to source /cdf/evbproxy/ace.csh

With ace privileges only, the procedure is to simply type EvbControl, from b0dap57,
b0dap58 or bO0dap59 as user cdfdaq.

b0dap57:~> EvbControl
bOdapb7:~> which EvbControl
EvbControl: aliased to “/bin/EvbControl.exp

Aces are also allowed, from b0Odap57 as user cdfdaq, to login to bOl3pcoml in a
specified way,

b0Odapb7:~> setup kerberos

b0dap57:~> /usr/krb5/bin/ kinit -k -t /var/adm/krb5/cdfdaq.keytab cdfdaq/cdf/ ‘hostnai
b0dap57:~> xhost + b013pcoml

b0dap57:~> rlogin b013pcoml -1 evbproxy

[evbproxy@b0l3gatel ~] setenv DISPLAY bOdap57:0.0

[evbproxy@b0l3gatel ~] ace &

Ace control panel-ii Safe and unsafe operations

All checks can be performed without consequences. Exiting the gui is also safe.
Cleanup L3 mon can also be performed during the Active state; it affects only the
monitoring tasks.

However, starting and stopping proxies (including cleanup L3 or EVB) involve stop-
ping the run, and all partitions using EVB and L3 should be in Start state.

The actions implied by clean up EVB include stopping EVB proxy, resetting all
SCPUs and SM, and restarting EVB proxy.

The actions implied by clean up L3 include stopping L3 proxy, killing monitoring
and communication processes, and restarting L3 proxy.

83

EVEB and L3 actions

Checks =

T scmamet |
[swescrus |
EVE proxy control

[swr]
| stee |
L3 proxy control

[ser]
[s]

CLEAN UP actions:

Clean up EVE

Clean up L3 farm
Clean up L3 mon
Other actions:
Exit ‘ =
[l Dl

Entrance to Expert’s Hall

| Getcontrols for: | [SM boeb1o ~ || Shortcut to reformatter message decoder

Figure 21: The EVB/L3 Ace Control Panel.

Ace control panel-iii Possible failures and how to understand them (ace control
panel does not start, buttons do not have any effect, etc)

One thing to note for example is that an action can be performed only after the
previous one has been completed. If the current action cannot be completed suc-
cessfully, it will eventually time-out (~ 10 min.). In order to proceed otherwise,
it will be necessary to kill a specific process (ps auzwww | grep ops) running on
b0I3pcom?2, exit and restart the application (as above). 8!

Ace control panel-iv How to check the response to stop/start/cleanup L3 com-
mand with log files

The relevant log files are located at

b0l3gate2 : /cdf /log /13 -box_monitor [13_proxy_ops.out_#

The 13proxy log files (b0l3gate2 : [cdf [log/13proxy/I3proxy.out #) can be useful
here as well.

Ace control panel-v. Where to find ”reasons to clean up evb” in log files

Any indications pointing to communication problems between processes existing on
SCPUs and Converters (tsend, builder, Boss).

81 Notice that buttons on the gui call a script, the script from b0l3pcoml calls inetd of b0l3pcom?2,
inetd of b0l3pcom?2 loads [3proxy/.cshre and executes ...ops.

84

Ace control panel-vi The check for suspended processes and where the results
are saved

The check for EVB suspended processes can be performed via the checks button for
SM+SCPUs. If any such process is found, a file is saved on b0l3pcom1 82

b0l3gatel : /log/cdf evb/Suspend Dump _#.log

Ace control panel-vii Expert tools (e.g. configuration, statistics, hdwdb, atm
test)

These can be accessed through the buttons at the bottom part of the gui. It includes
a Shortcut to reformatter message decoder and Controls for SCPUs and SM. The
former allows one to use information given in reformatter errors (displayed e.g. on
the Error Logger, or on the Level3 Display for the respective Processor node) —
namely the four integers partition identifier, SCPU, VRB, Link — to identify the
corresponding FE crate.

| [N
SCPUS Fort Converters

@ bOeb11 | @ Port1 @ bol3co1
) boeb12 | () Port2 1 bol3co2
) Port 3) bol3co3

) bOeb13

ID

) bol3co4
) bOI3c05
) b0I3c06
) bO0I3c07
) b0I3c08
) b0I3c03
) b0I3c10
© boI3c1

) boeb1a
) bOeb15
) boeb1s
1 boeb17?
) boebis
5 boeh1s
) boeb20
[@LLLE 1 bol3c12
O bl) bOl13c13
© boeh23

M

T boI3c14
) bOI3c15

) boeb24

Test!

) boeb2s | G ‘) bOI3c16
ose

Figure 22: Expert’s tool for testing ATM connections.

Also included is a module which has also been implemented for automatically test
ATM connections between SCPUs and converters, Fig. 22. This is not a safe
check: some messages are sent from SCPUs to converters and these messages will
be interpreted as corrupted data.

Another tool here included is an utility for checking and changing the online database
status of the Level3 nodes. It displays a map of the Level3 farm, Fig. 23, with the
indication of the individual online flag of each node; it provides a straightforward
way for changing their online/offline status, updating the database accordingly. To
access this feature, the user must have an account on cdfonprd database with man-
ager privileges.

82 Additionally, an automatic email is sent to current senior EVB experts, Steve, Ilya.

85

E|

[

[v] CO1 [vi oz [vi C0O3 [vi C04 [v] CO5 [¥] COB [vi CcO7 [v] CO8 [viCc09 [v COID ¥ C11 v c12 v C13 [vi C14 [v] C15 [vi C16

[V POOT [/ POT9 [PO35 (v POS1 [/ PO67 [POB3 [w P09 [V P115 [P133 [P151 (¥ P169 [P187 (v P212 [/ P228 [/l P244 (v P260
[¥i PO02 [/ PO20 [PO36 v PO52 [/ POBB [v POB4 [w P1OD [v] P116 [P134 [P152 v P170 [w| P188 (v P213 [/ P229 [v] P245 v P261
[PO03 [PO21 [PO37 [/ PO53 [/ POGY [# POBS [w P101 (v P117 [# P135 [# PI53 [/ P171 [# P189 (v P214 [/ P230 [v] P246 v P262
[V PO04 [/l PO22 [/ PO38 [V POS4 [/ PO70 [/ POBE v P102 (/I P118 [P136 [P154 (¥ P172 [P190 (¥ P215 [/ P231 [/l P247 [V P263
[vi PO05 [/l P023 [vi P39 v POS5 [PO71 [v/ POB7 [v P103 (v P18 [¥| P137 [PI55 (v P173 [P191 (v P216 [/ P232 [v] P248 v P264
[V POOG [PO24 [PO40 [/ POS6 [PO72 [# POBB [v P104 (v P120 [P138 [PI56 v P174 [P192 [P217 [/ P233 [v] P249 [V P265
[Vl PO07 [/l PO25 [PO41 [v PO57 [/ PO73 (¥ POBS [P105 [/ P121 [P139 [P157 (¥ P175 [P193 (¥ P218 [/ P234 [v] P250 [V P266
[vi PO08 [/ PO26 [vi P042 [V POSB [/ PO74 [/ POSD [v PI0B [P122 [¥/ P140 [PI58 v P176 [w| P194 (v P21 [/ P235 | P251 | [P267
[V PO0S [PO27 [P043 [V POS9 [/ PO75 [# PO91 [¥ P107 [V P123 [# P14l [# PI59 [/ P177 | P195| (¥ P220 [/ P236 [v] P252 v P268
[V PO10 [PO28 [/ PO44 v POGO [/ PO76 [/ PO92 [v P108 [V P124 [¥ P142 [PIGD (¥ P178 [P196 (v P221 [/ P237 [v] P253 (v P269
I P011 | [vi PO29 [vi PO45 [v] POB1 [PO77 [/ PO93 [v P10S (v P125 [¥] P143 [PIB1 v P179 [P197 (¥ P222 | P238 | [v] P254 (v P270
[V PO12 [/ PO30 [/ PO46 [/ POG2 [/ PO78 (7 P094 [w P10 (v P126 [P144 [PI62 [V P1B0 [P198 | P223 | [P239 [v] P255 [V P271
[V P013 [/ PO31 [/ P0O47 (v POG3 [/ PO79 (¥ PO95 [P111 [/ P127 [P145 [PI63 (¥ P181 [P19 (v P224 [/ P240 [v] P256 v P272
[vi P14 [/ PO32 [vi PO48 [V POB4 [/ POSD [/ PO9B [v P112 [/ P128 [P146 [PIB4 [v] P182 [P200 (v P225 [/ P21 [v] P257 [P273
[V PO15 [/ P033 [PO49 [/ POG5 [POS1 [# PO97 [¥ P13 [V P129 [P147 [PI65 [V P183 [P201 (v P226 [/ P242 [v] P258 v P274
[V PO16 [/l PO34 [/ POSO v POG6 [/ POS2 [/ PO98 [v P114 [/ P130 [P148 [PIG6 v P184 [P202 [v P227 [/ P243 [v] P259 [P275

vl PO17 ¥ P131 [P149 [PI67 [v P1B5 v P203
[vi PO18 Wi P132 [/ P150 [V PI68 [P1B6 v P204
[0 vo1 Vi voz ¥l Vo3 ¥ V04 ¥ V05 [¥] V0B ¥l Uo7 [vi uos

Commit changes to Database Close

s

Figure 23: Expert’s tool for checking and modifying the online status of nodes in the Level3

farm.

4.3

Monitoring GUIs

Monitoring GUIs-i L3 display

The L3 display is the main Level3 monitoring tool. It receives messages from Level3
monitoring processes % and translates that information in a visually representative,
color coded fashion.

[t is organized in three panels. The farm monitor describes the instantaneous (up-
dated every 4 seconds) activity status of the various nodes (and respective analysis
chains) of the farm. The state/transition panel shows the status of Level3 activity
for each of the eight partitions. The summary panel displays various Level3 dataflow
statistics.

In order to start the display, one needs to first start the daqgmon gui if not running
already,

bOdap#:~> setup fer
bOdap#:~> daqmon &

and from there click on the L3 button.

83Gee section on L3 monitoring above.

86

Figure 24: The Level3 Display.

Monitoring GUIs-ii EvbDagmon

The EvbDagmon is a EVB monitoring tool. It shows various information based on
messages received from EVB monitoring processes.

The display is started from the dagmon gui.

Event Builder Dagmon

O/EeSESNSSEE 0

Figure 25: The EVB monitor.

87

DATA ACQUISITION

5 General DAQ topics

5.1 RC State Machine and Run Control

Run Control-i What is state machine

The process of data acquisition is organized in a set of sequential steps before the
stage of actual data taking. These various stages are referred to as states (e.g. Start,
Idle, Ready, Active), while the passage from one these states to the other are known
as state transition (e.g. Partition, ColdStart, WarmStart, Activate).

The states and transitions taken together are referred to as state machine. There are
several states machine defined at CDF. For data taking (physics) one uses 'DAQ
state machine’; also numerous calibration states machine are defined.

Run Control-ii What happens with the detector/DAQ during transitions and
in states of DAQ state machine

While a state can be characterized as a steady stage of the DAQ system, a state
transition corresponds to a transient state. The global sequential requests (by/to
the different detector/DAQ sub-systems involved) that occur during state transition
are transferred and coordinated by Run Control (RC).

Run Control-iii What is a partition

Partitioning is a concept that allows for different sets of parts of the system to
work in parallel, independently of the others. This allows for the possibility of
testing/calibrating several subsystems at the same time.

There are eight hardware partitions (numbered 0 to 7). 8

Different L3 subfarms can be used in different partitions (a pair of subfarms formed
by association to a common Output node cannot however belong to distinct parti-
tions). Also different VRB crates may be booked by different partitions.

Run Control-iv. What is resource manager, booking resources

The resource manager is responsible for the booking of resources (individual front
end crates, L3 and EVB sub-systems) for each partition.

Run Control-v How to configure a simple run %

1. Setup the fer (front end readout) package containing RC code — setup fer
2. Start RC gui — rc &

84There also software partitions that do not talk to the Trigger Supervisor.
85See
hitp : [J[www — cdf online. fnal.gov/ace2help/runControl [rcace_guide/run_control _ace_guide.html

89

3. Select DAQ from RC Enable menu

4. Select Partition from RC Partitioning menu, and choose one of the available
partition identifiers

5. Select Run Configuration from RC Parameters menu, to choose a pre-defined
Run Type, e.g. COSMICS; if one chooses to configure a run, select EditorView RunSettings
from RC Parameters menu, to view/edit the run parameters
e select T'Menabled
e select VRB(HardEvb) as Output Type
e select the desired L3 subfarms

e set convenient values of additional parameters relevant to L3 configuration
in the table below that

e select FE crates from CrateSets

The mentioned (additional) L3 parameters that can be set in RC are used to specify
paths for data flow in the L3 farm (recall discussion on Level3 dataflow mechanics).
In particular, one may specify which output and input [3_node modules are to be
used by the various internal nodes.

Run Control-vi What is Error Handler

The Error Handler (EH) cooperates with RC allowing for the identification of pos-
sible causes of a failure. It displays information messages (Merlin format) from the
systems participating in the partition. %

Normally, a EH is started automatically by RC when a new partition is booked.
Otherwise, the monitor can also be explicitly started from RC by selecting Start
Error Handler from RC Partitioning menu; or

> setup errmon
> startEH #

where # is the partition identifier.

Run Control-vii The use of "Reply and Acknowledgements” window

The Reply and Acknowledgements window shows the status of the various systems
booked for the current partition, namely its (color-coded) status relative to a current
state transition.

86 To watch a different partition need to start another Error Handler display.

90

5.2 CDF trigger system

Trigger system-i How it works in general

The CDF trigger is a three-level, pipelined, buffered system. While Levell combines
some calorimeter, muon and COT information, a Level2 decision involves more
precise and further information of the detector subsystems. A Level2 acceptance
of an event initiates its full detector readout. When such Level2 acceptance signal
is communicated (by the Trigger Supervisor, TS) to each Front End crate, data
(mini-fragments) are loaded from the Readout Boards to the Tracer buffers. If this
occurs successfully a ’"done’ signal is sent to the TS, and data is directed to the VRB
board. It may happen that the VRB buffer has not enough free space in which case
a 'busy’ signal is generated. Otherwise, when ’done’ signals from all FE crates are
reported to the TS, this instructs, through the Trigger Manager (a TS process),
each SCPU to obtain the event data (VRB fragments) from its associated VRBs
and send the resulting SCPU fragment to Level3. A Converter node on the Level3
farm receives such SCPU fragments from all SCPUs, at which point it contains the
full event data, and forwards it to an available Processor node. There the event is
reformatted, and processed by the Filter. A successfull event is conducted to the
associated Output node, and transmitted to CSL.

A triggered event has passed a set triggers at each level and was correspondingly
associated with a set of trigger bits. A set of Levell, Level2, Level3 triggers defines
a Trigger Path (which is potentially associated with a certain type of Physics).
Different Trigger Paths compete in parallel, and a set of which defines a Trigger
Table (this is what is specified by RC while configuring the run).

Trigger system-ii Done dead time, done timeout

Done dead time and done timeout are associated with a FE crate readout failure.
If data cannot be loaded from the Readout Boards to the Tracer buffers in a FE
crate, this generates done dead time. If it fails to succeed within a specified (RC)
time window a ’done timeout’ is reported to the TS which then stops the run.

Trigger system-iii Busy dead time, busy timeout

Busy dead time and busy timeout are associated with EVB not processing the
incoming events fast enough as it would be required to keep its buffers with available
space, otherwise preventing data from flowing from the FE (Tracer) buffers to the
VRBs. Such ’busy’ conditions lead to FE dropping events and contribute to busy
dead time. Whenever such ’'busy’ signals last for more than a specified (by RC)
time window a ’busy timeout’ signal is reported to the TS which stops the run.

These can be caused by high L2 accept rates, internal EVB problems, or output
difficulties of the systems that follow (down the data stream).

91

Trigger system-iv TSI dead time
TSI dead time corresponds to TS internal delays.

92

5.3 Web support

Web support-i Electronic log books
The address of the CDF Electronics Logbook’s page is

http : | Jwww — cdf online. fnal.gov/e — log/
It contains links to the main CDF Shift E-Log, as well as to the L3 and the EVB

e-logs.

Web support-ii Help pages

The EVB/L3 page for experts, also including the contents of this document, is
available at

http : | Jwww — cdf online. fnal.gov /evbl3shift/evbl3pager.html

The EVB/L3 help page for ACEs is located at

http : | Jwww — cdf online. fnal.gov /evbl3shift/evbl3shift.html

(the DAQ ace information page contains a link pointing to this address as well).

Event Builder and Level 3 How to run the hardware event builder and Level 3 farm
for experts

Guide Guide
In this web page you find various information describing
the Event Builder and Level 3 Systems of CDF Bun IL [ts
. i 3 main purpose is to serve as a source of information about
Hardware & 08 These pages are part of the documentation project for the Event Builder * b !
Event Builder and Level 3 systems of CDF for Run 11 EVB/L3 and provide guidance to the shift cresw, the ACEs

in particular.

Level 3

Its main purpose is to senve as a source of expert-orented information
about EVBILI.
A non-expert introduction is presented as well in

WVarious documentation 1 available to help gettng fenilior
swith the sworks of the system. Together with these. pages,
the main reference designed for ACEs is CDF note 5793,
How to run the hardware event builder and Level 3 farm which you are definitely encowraged to resd.
O How to run the hardware event builder and Level 2
farm (these pages)
postscrpt (o pletures); comuments
O ACE rraining ralk
TENSPArENCIes; COMMENTS
O EVE and Lewveld for ACES, CDF note 5793
postscript, html; comments
O EVB/Leveld pager knowledge (in preparation)
COMments

A effortis done to keep the information snd vardous instmctions in these
pages up-to-date.

If something however has escaped that you find obsolete, or hawve any
suggestions, comments are very welcome,

Nuno Leonzrdo

Lastmodified: Wed Apr 3 14:51:14 3T 2002
An effort is done to keep the information and wardons
instructons in these pages up-to-date. If something
howewer has escaped that you find obsolete, or have any
suggestions, comuments are very welcome.

Figure 26: The EVB/L3 help pages for aces and pagers.

How to update these pages

Login to one of the online machines, and as cdface user go to the proper EVB/L3
directory,

93

> ssh b0dap30
b0dap18> su - cdface
b0dap18> cd /www/evbl3shift/

Changes may be committed to CVS. 8" These help pages reside in the cdfevb_ace
package of CDFII online repository.

Web support-iii CDF online home page
The CDF Online Computing home page is located at

http : | Jwww — cdf online. fnal.gov/
which contains various useful information.

Web support-iv Linux documentation

Linux is well documented on the web, both at FNAL 8 and elsewhere. %

87See CVS paragraph in a previous section.
8http://www-oss.fnal.gov/projects/fermilinux/
89E.g. http://www.tldp.org/

94

5.4 Trigger Manager

Trigger Manager-i What it does, where it is running

Trigger Manager (TM) is a process running on the Trigger Supervisor (TS), which
is responsible for forwarding new L2 accepts to the Scanner Manager (SM) via
SCRAMNet.

Recall, when 'done’ signals are received by the TS from all FE crates, the TS communicates
to TM, and this to the SM which coordinates (via SCRAMNet) the transfer of event data
from SCPUs to a unique Converter.

It is a multi-task process, supporting eight partitions.

Trigger Manager-ii TM tasks, scanFIFO

The Trigger Supervisor crate includes a bus master CPU (b0tsi00, where TM runs),
eight logic modules, each associated with a specific partition, as well as a SCRAMNet
module. A given TS logic module (say, associated with partition N) possesses a
scanFIFO, being capable of holding information associated with 16 events. TM
reads Level2 accept from scanFIFO sending it to SM. Whenever scanFIFO is full
no new trigger can be accepted.

We refer here the two tasks of importance in this context: the TM-SM poller,
tm_SM _pol (associated with SCRAMNet communication), and the task talking to
the scanFIFO associated with an existing partition, tpn_# (task partition number
#, # being the identifier of the partition).

Logging to the TS one should make sure that at least these two tasks are present
(except after RESET transition).

evbproxy@b0l3gatel> vxlogin b0tsi00

bOtsiO0-> i

NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
tm_SM_pol +tm_SM_pollst b92c78 200 READY 2834ec b92b68 0 0
tpn_0 tm_tsEach b52a70 200 READY 201438 b52820 3d0002 0

value = 0 = 0x0
bOtsiO0-> logout

If the tasks don’t exist or have SUSPENDED status, the way to recover is by
rebooting TS (need to make sure that no partitions are being used by nobody else).

Trigger Manager-iii How to check communications between TM and SM (dumpEvb)

95

Communication between the TM and the SM occur via SCRAMNet, for which are
reserved the memory regions correspondent to identifiers 49 (SM — T'M) and 50
(TM — SM). These can be checked using *° the dumpEvb(#) tool (where #
denotes the memory region identifier, i.e. 49 or 50 for SM-TM communications). !

990n any SCPU but not on SM.
91Gee SCRAMNet paragraph in a previous section.

96

55 DAQMON

DAQMON-i How to start
The DAQMON gui is started as follows,

bOdap#:~>

setup fer

bOdap#:~> dagqmon &

Run Control status

| Component 5tatus

RC
VxWaorks nodes

VaWorks | evencauitgerproxy
Scalers o Level3Proxy
Rates and Deadtime | Consumer Server/Logger
Trigger Supervisor | Resource Manager
TS " Online Database cdfonprd
Trigger Supervisor _
TS Rate | s
Return Crosspaints Soft EVE _
RXPT |_
Event Builder © UcCalTrigger
EVB | L2 CalTrigger
Level 3 [XFT+XTRP+MUTR
L3 1)
Consumer- Server/ Lagger _
cL o rwgca
Message Logger o walc
| [All partitions ~ | [g0
FE Manitor Configuratiaon _
FEMon Config |_
CDF Crate Reset _

SYSRESET

Online Database cdfanprd
Database Status

Figure 27: The DAQMON gui.

DAQMON:-ii Know what all tools are for

Do it.

97

5.6 CSL

CSL-i What is CSL, where it is physically 2

The Consumer-Server/Logger (CSL) is the system responsible for transferring the
data received from Level3 to permanent storage. The events provided by Level3 (or
by Software Event Builder) are made available to consumers % and sent over a high
speed fiber link to the Feynman Computing Center (FCC).

CSL runs on b0dau32, ** a dedicated server located on the third floor of B0 as well.

CSL-ii How it is connected to L3

The Level3 farm Output nodes, as well as Software Event Builder and consumer
processes, are clients that connect to the CSL, which is a server. While the Output
nodes and bO0dau32 have an Ethernet connection, inside CSL processes communicate
by means of message queues.

Physically, the output switch of the L3 farm Ethernet network, which receives con-
nections from the Output nodes, contains 8 connections to CSL.

CSL-iii What are the main components of CSL, explain message queues, re-
ceiver, logger, disk management, etc on a vague general level

There are receiver processes responsible for receiving events from Level3; consumer
interface processes, each associated with a consumer and responsible for sending
events to that consumer; logger processes, one per partition, which write events
to disk; managing processes (distributer) for disk management. These processes
communicate via message queues.

CSL-iv How to check CSL state using monitoring tools

The CSL monitoring display (obtained from dagmon gui) provides various informa-
tion about receiving, logging and sending events to consumers, the status of internal
buffers (message queues button). It displays information for each receiver process:
client node name, partition, number of events received, and rate. %

CSL-v. When to request restart of CSL

When one notices that Level3 is presenting output related problems (e.g., many
nodes appear green in the Level3 Display) it may be related to CSL not being accept
events at the expected rate. One should check on the CSL monitoring displays
whether events are being received by CSL, and being written to disk.

92Details can be found on the CSL help page, http://www-cdfonline.fnal.gov/ace2help/csl/

93Consumers are online monitoring processes, which look at a fraction of the events passing through
CSL; these are followed online by the shift crew, namely by the Consumer Operator, CO.

94b0dau3l functions as a backup.

9 Can be used e.g. to check if CSL is receiving events from a particular Output node, say.

98

If it is found necessary the CSL can be stopped and restarted. One (generally
the ACE) needs to connect to b0dau32 as user ace (from b0Odap53, 58, 59 as user
cdfdaq), and from there execute cslcom followed by check/stop/start/cleanup. %6

96Gee CSL help page for details and up-to-date procedure.

99

5.7 L3 Manager

L3 Manager-i What does it do, where is it running

Level3 manager is a SmartSockets client which during Cold/Warm Start provides
the Level3 farm with the most recent calibrations (calib tarball).

It is maintained by the filter group, and runs on bOdap31. To check the necessary
processes or execute the [3manager_start script one should log in to bOdap31 as
level3 user. °7

Details about the sequence of relevant actions are as follows: i) 13manager receives
Cold/Warm Start transition command from RC, ii) 13manager creates calib tarball
(if needed), iii) 13manager replies to RC with information about which calib tag to
use, iv) RC sends L3ReadoutList to L3, containing tags for filter, calib, tcl.

97Check the Level3 Manager Information page http://www-cdfonline.fnal.gov/ace2help/I13Manager/
for instructions.

100

5.8 SmartSockets

SmartSockets-i What is SmartSockets, DaqMsg, Merlin

SmartSockets % is the general CDF online/DAQ messaging system. It’s a com-
mercial product % (also UPS supported) used for processor (e.g., Linux, VxWorks)
communications. It is based on a centralized server architecture, all messages being
sent to a central process — the RTServer — which forwards them appropriately.

DaqMsg defines a standard format of the SmartSockets messages sent by CDF DAQ
components. This is a product developed at CDF and found in ups and online cvs
repository.

Merlin is a wrapper for DagMsg. It defines standard DA(Q) messages which are
circulated specifically between Run Control, Error Logger and DAQ systems, that
are related to data taking.

SmartSockets-ii What is RTServer

RTServer is the central DAQ messaging process, and runs on bOdau30.

SmartSockets-iii Where SmartSockets are used on Level3 farm

The communications between the Level3 farm, i.e. b0l3pcom2 (or more precisely,
the L3 proxy and [3_mon_client processes running there), and the RTServer are
established via SmartSockets (SS). '%

SmartSockets-iv. What happens if RTServer dies, if it is restarted

If the RTServer hangs (e.g., number of connection licenses is exceeded) it needs
to be restarted. One (generally the ACE) should log into b0dau30 as cdfdaq and
kill the correspondent process (rtserver); normally it will be automatically restarted
afterwards; otherwise it can be restarted from scratch (setup smartsockets; rtserver).

Once RTServer is restarted (or if b0dau30 has been rebooted, for that matter) one
may need to restart the EVB and Level3 proxies.

98Details can be found on the help page http://www-cdfonline.fnal.gov/ace2help/acesmartsockets.html
9There is a limited number of connection licenses.
100Gee the paragraph on L8 monitoring above.

101

5.9 Oracle database

Oracle database-i Where is it

Our Oracle database is a software product. The primary database is always running
on bO0dau30. The actual programs running are called instance of database. This
primary database we refer to as Online Production instance of Oracle database.

The database server bOdau30 has a special system of disk arrays attached to it,
where the database information is stored. This disk storage is different from plain
hard drives by its reliability and by the fact that everything is duplicated (mirrored).
This is natural as we can not take any data when database is down. There is also
a integration instance of the online database, which is completely separate, running
on b0dau36, and is used for tests/development.

The primary, production instance of the DAQ online database has several logical
sections serving different purposes. Most commonly known are: hardware database,
calibration database and trigger database. Hardware database contains the inven-
tory of all hardware of DAQ (cards, crates, PCs) and of all interconnections between
the components. Calibration database has the results of all calibration runs for de-
tector readout electronics. Trigger database defines the L1/L2/L3 trigger tables,
specifying which triggers should be used in data taking with what parameters (e.g.,
single-lepton > 4 GeV, etc), what filter executables to be run on L3 farm, etc.

Oracle database-ii How do we use it

Both EVB and L3 proxies talk to the Oracle online production database when they
are started, for obtaining the architecture information of EVB/L3.

Also, one sometimes needs to modify the hardware database entries by running the
hardware database selector (CardEditor). '

Oracle database-iii Is it okay if it is shut down, the effect on EVB /L3 operations

If online production database is down, any attempt to restart EVB/L3 proxies will
fail. It is sometimes possible to switch to online integration database by changing
some environment variables for EVB and database connection information in 13proxy
source code (and rebuilding L3 proxy).

Advanced

Oracle database-iv Connecting to database and applying SQL

It is possible to log into database, find necessary information and make appropriate
changes. 102

101Gee previous paragraph Hardware database for EVB.
102(ne needs to have a database account; and be careful with any changes to be performed.

102

Our Oracle database is based on SQL language.

An example follows (on any online PC). 10

setup fer

sqlplus wuser@cdfonprod
Qyour_script.sql

commit;

exit;

1031t is strongly recommended to verify any and all SQL scripts with knowledgeable experts.

103

APPENDIX

A APPENDIX

A.1 Help information on VxWorks commands

-> help

help Print this list

dbgHelp Print debugger help info

nfsHelp Print nfs help info

netHelp Print network help info

spyHelp Print task histogrammer help info
timexHelp Print execution timer help info

h [n] Print (or set) shell history

i [task] Summary of tasks’ TCBs

ti task Complete info on TCB for task

sp adr,args. .. Spawn a task, pri=100, opt=0, stk=20000
taskSpawn name,pri,opt,stk,adr,args... Spawn a task

td task Delete a task

ts task Suspend a task

tr task Resume a task

d [adr[,nunits[,width]]] Display memory

m adr[,widthl] Modify memory

mRegs [regl,task]] Modify a task’s registers interactively
pc [task] Return task’s program counter

version Print VxWorks version info, and boot line

Type <CR> to continue, Q<CR> to stop:

iam "user"[,"passwd"] Set user name and passwd

whoami Print user name

devs List devices

cd "path" Set current working path

pwd Print working path

1s ["path"[,longl] List contents of directory

11 ["path"] List contents of directory - long format
rename "0ld","new" Change name of file

copy ["in"][,"out"] Copy in file to out file (0 = std in/out)

14 [syms[,noAbort] [,"name"]] Load stdin, or file, into memory

(syms = add symbols to table:
-1 = none, 0 = globals, 1 = all)

lkup ["substr"] List symbols in system symbol table

1kAddr address List symbol table entries near address
checkStack [task] List task stack sizes and usage

printErrno value Print the name of a status value

period secs,adr,args... Spawn task to call function periodically
repeat n,adr,args... Spawn task to call function n times (O=forever)
diskFormat '"device" Format disk

diskInit "device" Initialize file system on disk

105

squeeze

NOTE:

"device"

A.2 Minicom keys

Squeeze free space on RT-11 device

Arguments specifying ’task’ can be either task ID or name.

Commands can be called by CTRL-A <key>

Main Functions

Dialing directory..D
Send files......... S
comm Parameters....P
Capture on/off..... L
send break......... F

Terminal settings..T
lineWrap on/off....W

Select function

local Echo on/off..E

run script (Go)....G |
Receive files...... R |
Add linefeed....... A |
Hangup............. H |
initialize Modem...M |
run Kermit......... K |

|

|

or press Enter for none.

Other Functions

Clear Screen....... C
cOnfigure Minicom. .0
Suspend minicom....J
Exit and reset..... X
Quit with no reset.Q
Cursor key mode....I
Help screen........ Z
scroll Back........ B

Written by Miquel van Smoorenburg 1991-1995
Some additions by Jukka Lahtinen 1997-1998
i18n by Arnaldo Carvalho de Melo 1998

A.3 DAQ VRB output data format

Tt lololoToToToToToToToToTo 1o 1o 1o 1o 1o Jo o o o o o To o T T To o T To o T To T T T T oo o T o oo o oo oo o oo o
Toloo oo oo o

ool loToTo oo
ol holoToTote
ool loToTo oo

RAW

EVENT

Yoo Toto oo To oo o

Toto o ToTo o 16 To oo
Dol tolooloTolo oo ToTotolo ToToTo o ToToTo o Jo ToTo o o Yo T Fo o o To To o o o Jo T o oo To T o o o To o o o o To o oo o o

This is an explanation of all words in raw event from
the wedge taken on Aug. 19, 1999. Consists of 1 SCPU,
1 VRB with only 1 link.

6b6b1919

1£0
1£56be00
33fafb00

6c010000

68010000

Sender ID

Message length
Message type
Receiver ID

Event length in bytes

SCPU length in bytes

106

Message
header

1000000
21000000
43000012
70380055
76635f6d

0
50010000

O O O O O

30010000

4c000000

44444543
1000000

15000000

3000000
2c004005
30004405
24004805
31004c05
24005005

44414843
1000000
0
29000000
3000000
27004005
31004605
36004c05
30005205
2c008405
2c008a05
33009005

0
aaaaaaaa
55555555

2011700

some SCPU information,
not used by reformatter
at the moment

N N N N N

VRB byte count = 0 __\ 64 bit

VRB byte count / word
status of VRB
\ Pointer section I*2 of VRB (link length)

\ Total are 10 links. Here we see the last
| 10th link is not O, byteswap(3001)=>130=>4c,
/ as seen in the next word.

/

Number of words in current link

Bank name CEMD
Bank number (Oxuuuullll), where uuuu - total
number of banks and 1111 - instance
Bank next (for raw data always O as no two
versions of a bank
Bank length in words (32bits). Starts at O for
this word
Bank type (1=I%2, 3=I%4, 4=Rx4)
2004105 2b004205 2b004305 \
32004505 2£004605 33004705 \
2e004905 2e004a05 2d004b05 | Data
2e004d05 2c004e05 2e004£05 /
2b005105 2005205 30005305 /

Bank name CHAD

Bank header is the same as above

36004105 2c004205 2a004305 2e004405 2d004505 \
2004705 31004805 3f004905 2c004a05 1d004b05 \
34004d05 30004e05 2c004£05 32005005 29005105 |
26005305 2d008005 30008105 2£008205 30008305 | Data
34008505 2d008605 2f008705 2c008805 31008905 |
2f008b05 2b008c05 2d008d05 2c008e05 2e008f05 /

31009105 32009205 31009305 /
< Control word O
< Control word A
< Control word 5
< Tracer word (not checked by reformatter)

107

SCPU
header
section

VRB
header
section

header

Data

I
Bank
header

Link
control
| words

80

< End of data word
< possible pad word, for 64 bit alignment

108

Acknowledgements

The author is supported by Fundagao para a Ciéncia e a Tecnologia, Portugal, grant PRAXIS

XX1/BD/18571/98, and a K.T. Kompton Fellowship, MIT.

References

[1]

2]

The CDF II Detector Technical Design Report, The CDF II Collaboration, FERMILAB-
PUB-96/390-E

EVB and Level3 for Aces, CDF/DOC/LEVEL-3/PUBLIC/5793; Ace help page for
EVB/L3, How to run the hardware event builder and Level 3 farm, “http://www-
cdfonline.fnal.gov/evbl3shift /evbl3shift. html”

CDF Online Computing Home Page, “http://www-cdfonline.fnal.gov/”; DAQ Ace Infor-
mation Web Page, “ http://www-cdfonline.fnal.gov/ace2help/daqacehelp.html”, and links
therein.

Additional EVB/Level3 documentation. Event builder messages, S.Tether; Letter of
Intend for Run IIb: Upgrade of the Event-Builder and Level-3 Trigger PC Farm,
CDF/DOC/LEVEL-3/CDFR/5516; Event-Building and PC Farm based Level-3 Trig-
ger at the CDF Experiment, CDF/PUB/LEVEL-3/PUBLIC/5051; ATM Based Event
Building and PC Based Level 3 Trigger at CDF, FERMILAB-CONF-98/348-E,
CDF/PUB/ONLINE/PUBLIC/4789; Proposal for Expansion of the Event-Builder and
Level-3 Trigger to a 1000 Hz Input Rate, CDF/DOC/LEVEL-3/PUBLIC/4623; Prototype
of a PC Farm for the CDF Run II Level-3 Trigger, CDF/DOC/LEVEL-3/PUBLIC/4551

Beginning Linux programming, R.Stones, N.Matthew, Wrox Press, Chicago; The Linux
Documentation Project, “http://www.tldp.org/”; UPS/UPD v4 Product Page at FNAL,
“http://www.fnal.gov/docs/products/ups/”; CVS page, “http://www.cvshome.org/”,
“http://www.cvshome.org/docs/manual /cvs.html”

VxWorks Reference Manual, 5.4, Wind River Systems, Inc., 1999,
“http://www.windriver.com/pdf/ref.pdf”

SCRAMNet+ Network, VMEG6U Hardware Ref-
erence, Systran Inc., 1998; SCRAMNet Network, PCI Bus Hardware Reference, Systran
Inc., 1998; “http://www.systran.com/scmain.html”

109

